我正在使用Eigen 3的Cholesky模块来求解线性方程组。 Eigen文档指出,使用LDLT
代替LLT
会更快达到此目的,但我的基准测试显示了不同的结果。
我使用以下代码进行基准测试:
#include <iostream>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Cholesky>
using namespace std;
using namespace std::chrono;
using namespace Eigen;
int main()
{
MatrixXf cov = MatrixXf::Random(4200, 4200);
cov = (cov + cov.transpose()) + 1000 * MatrixXf::Identity(4200, 4200);
VectorXf b = VectorXf::Random(4200), r1, r2;
r1 = b;
LLT<MatrixXf> llt;
auto start = high_resolution_clock::now();
llt.compute(cov);
if (llt.info() != Success)
{
cout << "Error on LLT!" << endl;
return 1;
}
auto middle = high_resolution_clock::now();
llt.solveInPlace(r1);
auto stop = high_resolution_clock::now();
cout << "LLT decomposition & solving in " << duration_cast<milliseconds>(middle - start).count()
<< " + " << duration_cast<milliseconds>(stop - middle).count() << " ms." << endl;
r2 = b;
LDLT<MatrixXf> ldlt;
start = high_resolution_clock::now();
ldlt.compute(cov);
if (ldlt.info() != Success)
{
cout << "Error on LDLT!" << endl;
return 1;
}
middle = high_resolution_clock::now();
ldlt.solveInPlace(r2);
stop = high_resolution_clock::now();
cout << "LDLT decomposition & solving in " << duration_cast<milliseconds>(stop - start).count()
<< " + " << duration_cast<milliseconds>(stop - middle).count() << " ms." << endl;
cout << "Total result difference: " << (r2 - r1).cwiseAbs().sum() << endl;
return 0;
}
我在Windows上用g++ -std=c++11 -O2 -o llt.exe llt.cc
编译了它,这就是我得到的:
LLT decomposition & solving in 6515 + 15 ms.
LDLT decomposition & solving in 8562 + 15 ms.
Total result difference: 1.27354e-006
那么,为什么LDLT比LLT慢?我做错了什么或者我是否错过理解文档?
答案 0 :(得分:4)
文档的这句话已经过时了。对于相当大的矩阵,LLT应该比LDLT快得多,因为LLT实现利用了缓存友好的矩阵 - 矩阵运算,而LDLT实现仅涉及旋转和矩阵向量运算。通过devel分支,你的例子给了我:
LLT decomposition & solving in 380 + 4 ms.
LDLT decomposition & solving in 2746 + 4 ms.