如何根据pandas数据框中的数据计算主成分分析?
答案 0 :(得分:67)
大多数sklearn个对象都可以使用pandas
个数据帧,这样会对你有用吗?
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
df = pd.DataFrame(data=np.random.normal(0, 1, (20, 10)))
pca = PCA(n_components=5)
pca.fit(df)
您可以使用
访问组件pca.components_
答案 1 :(得分:1)
import pandas
from sklearn.decomposition import PCA
import numpy
import matplotlib.pyplot as plot
df = pandas.DataFrame(data=numpy.random.normal(0, 1, (20, 10)))
# You must normalize the data before applying the fit method
df_normalized=(df - df.mean()) / df.std()
pca = PCA(n_components=df.shape[1])
pca.fit(df_normalized)
# Reformat and view results
loadings = pandas.DataFrame(pca.components_.T,
columns=['PC%s' % _ for _ in range(len(df_normalized.columns))],
index=df.columns)
print(loadings)
plot.plot(pca.explained_variance_ratio_)
plot.ylabel('Explained Variance')
plot.xlabel('Components')
plot.show()