我一直在努力寻找一种可以理解的方法来做到这一点。我有四个点,一个StartPt,EndPoint和Intersection点来代表bezier中的峰值和谷值。
C#中的BezierSegment需要start,controlPoint 1,controlPoint 2,endpoint - 但是我没有任何控制点我只有这两个点位于贝塞尔曲线上(我称之为上面的交点)。 ..如何计算两个控制点?
先谢谢,这让我很疯狂。
这里有一些解释:http://www.tinaja.com/glib/nubz4pts1.pdf但是它写在后记中,而且这种语言对我来说毫无意义 - 这是我的头脑。
答案 0 :(得分:16)
对于通过4个点的曲线,存在无数个解,但最好的简单解决方案是尝试使曲线段长度与弦长成比例。您链接到的代码是一阶近似,效果很好并且非常快。
这是PostScript代码的C#转换:
static class DrawingUtility
{
// linear equation solver utility for ai + bj = c and di + ej = f
static void solvexy(double a, double b, double c, double d, double e, double f, out double i, out double j)
{
j = (c - a / d * f) / (b - a * e / d);
i = (c - (b * j)) / a;
}
// basis functions
static double b0(double t) { return Math.Pow(1 - t, 3); }
static double b1(double t) { return t * (1 - t) * (1 - t) * 3; }
static double b2(double t) { return (1 - t) * t * t * 3; }
static double b3(double t) { return Math.Pow(t, 3); }
static void bez4pts1(double x0, double y0, double x4, double y4, double x5, double y5, double x3, double y3, out double x1, out double y1, out double x2, out double y2)
{
// find chord lengths
double c1 = Math.Sqrt((x4 - x0) * (x4 - x0) + (y4 - y0) * (y4 - y0));
double c2 = Math.Sqrt((x5 - x4) * (x5 - x4) + (y5 - y4) * (y5 - y4));
double c3 = Math.Sqrt((x3 - x5) * (x3 - x5) + (y3 - y5) * (y3 - y5));
// guess "best" t
double t1 = c1 / (c1 + c2 + c3);
double t2 = (c1 + c2) / (c1 + c2 + c3);
// transform x1 and x2
solvexy(b1(t1), b2(t1), x4 - (x0 * b0(t1)) - (x3 * b3(t1)), b1(t2), b2(t2), x5 - (x0 * b0(t2)) - (x3 * b3(t2)), out x1, out x2);
// transform y1 and y2
solvexy(b1(t1), b2(t1), y4 - (y0 * b0(t1)) - (y3 * b3(t1)), b1(t2), b2(t2), y5 - (y0 * b0(t2)) - (y3 * b3(t2)), out y1, out y2);
}
static public PathFigure BezierFromIntersection(Point startPt, Point int1, Point int2, Point endPt)
{
double x1, y1, x2, y2;
bez4pts1(startPt.X, startPt.Y, int1.X, int1.Y, int2.X, int2.Y, endPt.X, endPt.Y, out x1, out y1, out x2, out y2);
PathFigure p = new PathFigure { StartPoint = startPt };
p.Segments.Add(new BezierSegment { Point1 = new Point(x1, y1), Point2 = new Point(x2, y2), Point3 = endPt } );
return p;
}
}
我没有测试过它,但它编译了。只需使用您拥有的4个点来调用DrawingUtility.BezierFromIntersection
,它就会返回PathFigure
来绘制曲线。
答案 1 :(得分:1)
以下是两个很好的例子:
http://www.codeproject.com/KB/graphics/ClosedBezierSpline.aspx http://www.codeproject.com/KB/graphics/BezierSpline.aspx
另请参阅此动画以更好地了解BezierSplines的工作原理 http://en.wikipedia.org/wiki/B%C3%A9zier_curve
答案 2 :(得分:1)
你应该考虑使用红衣主教(Canonical)样条线,它使用路径上存在的一组点,加上一个“张力”参数来控制角落平滑到角落切线的程度。
在Windows窗体中,可以使用 DrawCurve 和 DrawClosedCurve 方法。在WPF中没有直接的等价物。以下是两篇描述使用C#在WPF中使用基数样条线的文章。
答案 3 :(得分:0)
as3版本:
package
{
import flash.geom.Vector3D;
public class DrawingUtility
{
private var x1:Number;
private var y1:Number;
private var x2:Number;
private var y2:Number;
// linear equation solver utility for ai + bj = c and di + ej = f
private function solvexy(a:Number, b:Number, c:Number, d:Number, e:Number, f:Number):Vector.<Number>
{
var returnVal:Vector.<Number> = new Vector.<Number>();
var j:Number = (c - a / d * f) / (b - a * e / d);
var i:Number = (c - (b * j)) / a;
returnVal[0] = i;
returnVal[1] = j;
return returnVal;
}
// basis functions
private function b0(t:Number):Number {
return Math.pow(1 - t, 3);
}
private function b1(t:Number):Number {
return t * (1 - t) * (1 - t) * 3;
}
private function b2(t:Number):Number {
return (1 - t) * t * t * 3;
}
private function b3(t:Number):Number {
return Math.pow(t, 3);
}
private function bez4pts1(x0:Number, y0:Number, x4:Number, y4:Number, x5:Number, y5:Number, x3:Number, y3:Number):void
{
// find chord lengths
var c1:Number = Math.sqrt((x4 - x0) * (x4 - x0) + (y4 - y0) * (y4 - y0));
var c2:Number = Math.sqrt((x5 - x4) * (x5 - x4) + (y5 - y4) * (y5 - y4));
var c3:Number = Math.sqrt((x3 - x5) * (x3 - x5) + (y3 - y5) * (y3 - y5));
// guess "best" t
var t1:Number = c1 / (c1 + c2 + c3);
var t2:Number = (c1 + c2) / (c1 + c2 + c3);
// transform x1 and x2
var x1x2:Vector.<Number> = solvexy(b1(t1), b2(t1), x4 - (x0 * b0(t1)) - (x3 * b3(t1)), b1(t2), b2(t2), x5 - (x0 * b0(t2)) - (x3 * b3(t2)));
x1 = x1x2[0];
x2 = x1x2[1];
// transform y1 and y2
var y1y2:Vector.<Number> = solvexy(b1(t1), b2(t1), y4 - (y0 * b0(t1)) - (y3 * b3(t1)), b1(t2), b2(t2), y5 - (y0 * b0(t2)) - (y3 * b3(t2)));
y1 = y1y2[0];
y2 = y1y2[1];
}
public function BezierFromIntersection(startPt:Vector3D, int1:Vector3D, int2:Vector3D, endPt:Vector3D):Vector.<Vector3D>
{
var returnVec:Vector.<Vector3D> = new Vector.<Vector3D>();
bez4pts1(startPt.x, startPt.y, int1.x, int1.y, int2.x, int2.y, endPt.x, endPt.y);
returnVec.push(startPt);
returnVec.push(new Vector3D(x1, y1));
returnVec.push(new Vector3D(x2, y2));
returnVec.push(endPt);
return returnVec;
}
}
}