修改
最后,我发现这种“蛮力”方法是不对的。
所以我又写了两种解决LIS问题的方法。
[代码在最后。]
<小时/> 我尝试使用蛮力来找到最长增加子序列(LIS)。 但我个人认为这个算法的时间复杂度是O(n 2 ),它等于DP方法,它是否正确?
// Find LIS Brute force.
public static int[] findLIS_BF (int[] givenArray) {
int size = givenArray.length;
int maxLen = Integer.MIN_VALUE;
int prevIndex = 0;
int tempLen = 1;
int head = 0;
for (int tempHead = 0; tempHead < size; tempHead ++) {
prevIndex = tempHead;
tempLen = 1;
for (int subPointer = tempHead + 1; subPointer < size; subPointer ++) {
if (givenArray[prevIndex] <= givenArray[subPointer]) {
prevIndex = subPointer;
tempLen ++;
}
}
if (tempLen > maxLen) {
maxLen = tempLen;
head = tempHead;
}
}
System.out.println("LIS by BF, max len = " + maxLen);
int[] rest = new int[maxLen];
int restIndex = 0;
rest[restIndex] = givenArray[head];
restIndex ++;
prevIndex = head;
for (int i = head + 1; i < size; i ++) {
if (givenArray[prevIndex] <= givenArray[i]) {
rest[restIndex] = givenArray[i];
restIndex ++;
prevIndex = i;
}
}
return rest;
}
<小时/> 的 [编辑]
public class FindLIS_LCS {
// Find LIS by LCS.
// Time complexity = O(n^2).
// LCS.
// Time complexity = O(n^2).
// Note:
// UP LEFT MARK = -1.
// UP MARK = -2.
// LEFT MARK = -3.
private static int LCS (int[] firstA, int[] secondA, int[][]c, int[][]b) {
int lenFA = firstA.length;
int lenSA = secondA.length;
// Init c matrix.
for (int i = 0; i < lenFA; i ++) c[i][0] = 0;
for (int i = 0; i < lenSA; i ++) c[0][i] = 0;
for (int i = 1; i < lenFA+1; i ++) {
for (int j = 1; j < lenSA+1; j ++) {
if (firstA[i - 1] == secondA[j - 1]) {
c[i][j] = c[i - 1][j - 1] + 1;
b[i - 1][j - 1] = -1;
} else if (c[i - 1][j] >= c[i][j - 1]) {
c[i][j] = c[i - 1][j];
b[i - 1][j - 1] = -2;
} else {
c[i][j] = c[i][j - 1];
b[i - 1][j - 1] = -3;
}
}
}
return c[lenFA][lenSA];
}
// Print out the LCS.
// Time complexity = O(m + n).
private static void printLCS_Helper (int[] firstA, int[][]b, int i, int j) {
if (i < 0 || j < 0) return; // Base case.
if (b[i][j] == -1) {
printLCS_Helper(firstA, b, i - 1, j - 1);
System.out.print(String.format("%-6d", firstA[i]));
} else if (b[i][j] == -2) printLCS_Helper(firstA, b, i - 1, j);
else printLCS_Helper(firstA, b, i, j - 1);
}
public static void printLCS (int[] firstA, int[][]b) {
int size = firstA.length;
printLCS_Helper(firstA, b, size - 1, size - 1);
}
// Quick sort for array.
// Time complexity = O(nlgn).
private static void exchange (int[] givenArray, int firstIndex, int secondIndex) {
int temp = givenArray[firstIndex];
givenArray[firstIndex] = givenArray[secondIndex];
givenArray[secondIndex] = temp;
}
private static int partition (int[] givenArray, int start, int end, int pivotIndex) {
int pivot = givenArray[pivotIndex];
int left = start;
int right = end;
while (left <= right) {
while (givenArray[left] < pivot) left ++;
while (givenArray[right] > pivot) right --;
if (left <= right) {
exchange(givenArray, left, right);
left ++;
right --;
}
}
return left;
}
private static void quickSortFromMinToMax_Helper (int[] givenArray, int start, int end) {
if (start >= end) return; // Base case.
// Generate a random num in the range[start, end] as the pivot index to partition the array.
int rand = start + (int) (Math.random() * ((end - start) + 1));
int split = partition (givenArray, start, end, rand);
// Do recursion.
quickSortFromMinToMax_Helper(givenArray, start, split - 1);
quickSortFromMinToMax_Helper(givenArray, split, end);
}
public static void quickSortFromMinToMax (int[] givenArray) {
int size = givenArray.length;
quickSortFromMinToMax_Helper(givenArray, 0, size - 1);
}
// Copy array.
public static int[] copyArray (int [] givenArray) {
int size = givenArray.length;
int[] newArr = new int[size];
for (int i = 0; i < size; i ++)
newArr[i] = givenArray[i];
return newArr;
}
// Main method to test.
public static void main (String[] args) {
// Test data: {1, 2, 1, 4, 5, 3, 10}.
//int[] givenArray = {1, 2, 1, 4, 5, 3, 10};
int[] givenArray = {2, 1, 6, 3, 5, 4, 8, 7, 9};
int size = givenArray.length;
// Test finding LIS by LCS approach.
int[] sortedArr = copyArray(givenArray);
quickSortFromMinToMax (sortedArr);
int[][]c = new int[size + 1][size + 1];
int[][]b = new int[size][size];
System.out.println("Test max len = " + LCS(givenArray, sortedArr, c, b));
printLCS(givenArray, b);
}
}
[DP +二进制搜索方法]
public class FindLIS {
// Linear search.
public static int linearSearch (int[] givenArray, int key) {
int size = givenArray.length;
for (int i = size - 1; i >= 0; i --) {
if (givenArray[i] >= 0)
if (givenArray[i] < key) return i;
}
return -1;
}
// Find the len of the LIS.(Longest increasing (non-necessarily-adjacent) subsequence).
// DP + Binary search.
// Time complexity = O(nlgn).
// Note:
// This binary search to find the elem's index of the given array, which is less than the elem's value = key.
private static int biSearch (int[] givenArray, int start, int end, int key) {
if (start > end) return -1;
int mid = (start + end) / 2;
if (givenArray[mid] <= key) return mid;
else return biSearch(givenArray, start, mid - 1, key);
}
public static int findLISLen (int[] givenArray) {
int size = givenArray.length;
int maxLen = 1;
int[] memo = new int[size];
for (int i = 0; i < size; i ++) memo[i] = -10;
memo[0] = givenArray[0];
for (int i = 1; i < size; i ++) {
if (givenArray[i] > memo[maxLen - 1]) {
memo[maxLen] = givenArray[i];
maxLen ++;
} else {
// int pos = linearSearch(memo, givenArray[i]); // Using linear search, the time complexity = O(n^2).
int pos = biSearch(memo, 0, maxLen - 1, givenArray[i]); // Using Binary search, the time complexity = O(nlgn).
memo[pos + 1] = givenArray[i];
}
}
// Show memo.
showArray(memo);
return maxLen;
}
// Show array.
public static void showArray (int[] givenArray) {
int size = givenArray.length;
for (int i = 0; i < size; i ++)
System.out.print(String.format("%-6d", givenArray[i]));
System.out.println();
}
// Main method to test.
public static void main (String[] args) {
// Test data: {2, 1, 6, 3, 5, 4, 8, 7, 9}.
//int[] givenArray = {2, 1, 6, 3, 5, 4, 8, 7, 9};
//int[] givenArray = {1, 2, 1, 4, 5, 3, 10};
int[] givenArray = {2, 1, 6, 3, 5, 4, 8, 7, 9};
// Test finding the LIS by DP + Binary search.
System.out.println("Test finding the LIS by DP + Binary search, max len = " + findLISLen(givenArray));
}
}
答案 0 :(得分:2)
是的,你的方法和DP方法都是复杂的O(n ^ 2)。对于O(nlogn)算法,参考here它也给出了实现。
答案 1 :(得分:0)
在Java中尝试这种方法。使用Java的Inbuilt TreeSet ..因此它不易出错且实现起来更快..
//an efficient way to find longest increasing sub sequence O(nlogn)
//using the inbuilt TreeSet
import java.io.*;
import java.util.*;
public class LISEfficient {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(); //number of elements
int[] ar = new int[n]; //input elements
for (int i=0; i<n; i++) {
ar[i] = sc.nextInt();
}
System.out.println(lis2(ar)); //returns the size of LIS
}
static int lis2(int[] ar){
TreeSet<Integer> set = new TreeSet<Integer>();
for (int i=0; i<ar.length; i++) {
Integer ceil = set.ceiling(ar[i]);
if(ceil == null) //if ceil not present this simply extends the current sequence
set.add(ar[i]);
else{ //replace ceil with this value
set.remove(ceil);
set.add(ar[i]);
}
}
return set.size();
}
}