我的数据框看起来像这样(dput在下面):
Date SiteSub HeatingDegreeDay MCnt MCnt_lag7 MCnt_lag9
2009-11-01 EC_BC.Z_Z 0.00 0 0 0
2009-11-02 EC_BC.Z_Z 0.00 0 0 0
2009-11-03 EC_BC.Z_Z 0.00 0 0 0
2009-11-04 EC_BC.Z_Z 0.00 0 0 0
2009-11-05 EC_BC.Z_Z 0.00 0 0 0
2009-11-06 EC_BC.Z_Z 0.00 0 0 0
2009-11-07 EC_BC.Z_Z 0.00 1 0 0
我正在尝试计算此数据框中HeatingDegreeDay
,MCnt
,MCnt_lag7
,MCnt_lag9
的移动总和或宽度7的平均值。要考虑的数据的一些特征是:NA
向量中缺少日期和HeatingDegreeDay
值的不规则时间序列。
一旦我计算了7天移动总和或平均值,我需要计算相关系数,以帮助我确定哪个滞后(7天或9天)最适合HeatingDegreeDay
向量。
问题: 移动总和或平均值计算是否可以与相同代码中的相关系数计算相结合,还是需要分步进行?如果是这样,怎么样?
问题:
在计算移动总和或平均值时,我一直遇到麻烦。首先,使用rollapply,我无法将多个向量传递给rollapply
,因为它似乎是单变量的。其次,使用TTR
' SMA
,我得到了一个"不正确的维数"错误。我无法使用rollmean,因为我的数据有NA
个。
我看过: R: How to apply moving averages to subset of columns in a data frame?和 Conditional rolling mean (moving average) on irregular time series
我试过了:
#Calculate moving average
Lag0910_79 <- as.numeric(Lag0910_79$HeatingDegreeDay, Lag0910_79$MCnt7, Lag0910_79$MCnt9)
Lagzoo <- as.zoo(Lag0910_79)
Lagzoo_7 <- rollapply(Lagzoo, width=7, mean, na.rm=TRUE)
Lagzoo_7 <- as.data.frame(Lagzoo_7)
结果:
dput(head(Lagzoo_7, 15))
structure(list(Lagzoo_7 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1)), .Names = "Lagzoo_7", row.names = c("4", "5", "6",
"7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17",
"18"), class = "data.frame")`
和:
Lagzoo.ttr <- SMA(Lag0910_79[, "HeatingDegreeDay"], 7)
Lag0910_79 [,&#34; HeatingDegreeDay&#34;]出错: 维度数不正确
我该如何使这项工作?显然,我没有做对。谢谢你的帮助!
我的数据结构如下:
structure(list(Date = structure(c(14549, 14550, 14551, 14552,
14553, 14554, 14555, 14556, 14557, 14558, 14559, 14560, 14561,
14562, 14563, 14564, 14565, 14566, 14567, 14568, 14569, 14570,
14571, 14572, 14573, 14574, 14575, 14576, 14577, 14578, 14579,
14580, 14581, 14582, 14583, 14584, 14585, 14586, 14587, 14588,
14589, 14590, 14591, 14592, 14593, 14594, 14595, 14596, 14597,
14598, 14599, 14600, 14601, 14602, 14603, 14604, 14605, 14606,
14607, 14608, 14609, 14610, 14611, 14612, 14613, 14614, 14615,
14616, 14617, 14618, 14619, 14620, 14620, 14620, 14621, 14622,
14622, 14623, 14624, 14625, 14626, 14627, 14628, 14629, 14629,
14629, 14629, 14629, 14630, 14631, 14631, 14631, 14632, 14632,
14632, 14632, 14632, 14632, 14632, 14633, 14633, 14633, 14634,
14634, 14634, 14634, 14635, 14635, 14635, 14635, 14636, 14636,
14636, 14636, 14636, 14636, 14637, 14637, 14637, 14638, 14638,
14638, 14639, 14639, 14640, 14641, 14642, 14643, 14643, 14644,
14645, 14646, 14647, 14648, 14649, 14650, 14651, 14652, 14653,
14654, 14655, 14656, 14657, 14658, 14659, 14660, 14661, 14661,
14662, 14663, 14663, 14664, 14665, 14666, 14667, 14668, 14669,
14669, 14670, 14671, 14672, 14673, 14674, 14675, 14675, 14676,
14677, 14678, 14678, 14679, 14680, 14681, 14681, 14681, 14682,
14682, 14682, 14683, 14684, 14685, 14686, 14687, 14688, 14689,
14689, 14690, 14691, 14692, 14693, 14694, 14694, 14694, 14695,
14696, 14697, 14698, 14699, 14700, 14701, 14702, 14703, 14703,
14703, 14703, 14704, 14704, 14705, 14706), class = "Date"), SiteSub = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "EC_BC.Z_Z", class = "factor"),
HeatingDegreeDay = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 3L, 4L, 9L, 11L,
14L, 15L, 12L, 13L, 17L, 16L, 16L, 16L, 10L, 8L, 8L, 7L,
6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0.00",
"0.02", "0.05", "0.14", "0.32", "0.50", "0.89", "0.96", "0.98",
"1.02", "1.04", "1.30", "1.40", "1.49", "1.50", "1.58", "1.86"
), class = "factor"), MCnt = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("0", "1"), class = "factor"),
MCnt_lag7 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, NA, NA, NA,
NA, NA, NA, NA), .Label = c("0", "1"), class = "factor"),
MCnt_lag9 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, NA, NA, NA, NA, NA,
NA, NA, NA, NA), .Label = c("0", "1"), class = "factor")), .Names = c("Date",
"SiteSub", "HeatingDegreeDay", "MCnt", "MCnt_lag7", "MCnt_lag9"
), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31",
"32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42",
"43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53",
"54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64",
"65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75",
"76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86",
"87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97",
"98", "99", "100", "101", "102", "103", "104", "105", "106",
"107", "108", "109", "110", "111", "112", "113", "114", "115",
"116", "117", "118", "119", "120", "121", "122", "123", "124",
"125", "126", "127", "128", "129", "130", "131", "132", "133",
"134", "135", "136", "137", "138", "139", "140", "141", "142",
"143", "144", "145", "146", "147", "148", "149", "150", "151",
"152", "153", "154", "155", "156", "157", "158", "159", "160",
"161", "162", "163", "164", "165", "166", "167", "168", "169",
"170", "171", "172", "173", "174", "175", "176", "177", "178",
"179", "180", "181", "182", "183", "184", "185", "186", "187",
"188", "189", "190", "191", "192", "193", "194", "195", "196",
"197", "198", "199", "200", "201", "202", "203", "204", "205",
"206", "207", "208"), class = "data.frame")
答案 0 :(得分:3)
如果问题的dput
输出中显示的数据框是DF
,那么这会将第3:6列转换为数字,执行生成rmean
的rollmean计算,这是一个滚动矩阵手段。然后,它使用corNA
生成滚动关联的向量rcor
,并将所有内容放入一个数据框DF3
:
library(zoo)
DF2 <- DF
DF2[3:6] <- lapply(DF2[3:6], function(x) as.numeric(as.character(x)))
m <- as.matrix(DF2[3:6])
rmean <- rollapplyr(m, 7, mean, na.rm = TRUE, fill = NA) # mean matrix
corNA <- function(x) {
x <- na.omit(x[, 1:2])
if (nrow(x) < 2 || sd(x[,1]) == 0 || sd(x[,2]) == 0) return(NA)
cor(x[, 1], x[,2])
}
rcor <- rollapplyr(m, 7, corNA, by.column = FALSE, fill = NA) # vector of cors
DF3 <- data.frame(DF2, rmean, rcor) # put it all together
动物园版本在这里。由于动物园需要唯一的日期,我们会聚合具有相同日期的行:
z <- read.zoo(DF2[-2], aggregate = mean) # can omit aggregate=mean if dates are unique
zmean <- rollapplyr(z, 7, mean, na.rm = TRUE, fill = NA) # means
zcor <- rollapplyr(z, 7, corNA, by.column = FALSE, fill = NA) # cors
z2 <- merge(z, zmean, zcor) # omit this if separate objects are ok
答案 1 :(得分:0)
这是你想要的滚动意味着什么?
# Convert dates to days
aa = as.Date(x$Date)
x$Date = as.numeric(aa - aa[1])
# I think it's easier to get rid of the factors
factor2number = function(x) as.numeric(as.character(x))
x[,3:6] = apply(x[,3:6],2,factor2number)
# A rolling mean function
rollmean_r = function(x,y,width) {
out = numeric(length(x))
for( i in seq_along(x) ) {
window = x >= (x[i]-width) & x <= (x[i]+width)
out[i] = .Internal(mean( y[window] ))
}
return(out)
}
# Calculate the rolling means
x[,3:6] = apply(x[3:6], 2, function(y) rollmean_r(x$Date,y,7) )
x
# Date SiteSub HeatingDegreeDay MCnt MCnt_lag7 MCnt_lag9
# 1 0 EC_BC.Z_Z 0 0.12500000 0 0
# 2 1 EC_BC.Z_Z 0 0.11111111 0 0
# 3 2 EC_BC.Z_Z 0 0.10000000 0 0
# 4 3 EC_BC.Z_Z 0 0.09090909 0 0
# 5 4 EC_BC.Z_Z 0 0.08333333 0 0
# 6 5 EC_BC.Z_Z 0 0.07692308 0 0
# 7 6 EC_BC.Z_Z 0 0.07142857 0 0
# 8 7 EC_BC.Z_Z 0 0.06666667 0 0
# 9 8 EC_BC.Z_Z 0 0.07142857 0 0
# 10 9 EC_BC.Z_Z 0 0.07692308 0 0
# 11 10 EC_BC.Z_Z 0 0.08333333 0 0
# 12 11 EC_BC.Z_Z 0 0.09090909 0 0
# 13 12 EC_BC.Z_Z 0 0.10000000 0 0
# 14 13 EC_BC.Z_Z 0 0.11111111 0 0
# 15 14 EC_BC.Z_Z 0 0.00000000 0 0