必要矩阵的分解导致错误的旋转和翻译

时间:2014-03-31 09:19:42

标签: java opencv computer-vision

我正在做一些SfM并且遇到从基本矩阵中获得R和T的麻烦。

以下是我在源代码中所做的事情:

Mat fundamental = Calib3d.findFundamentalMat(object_left, object_right);
Mat E = new Mat();

Core.multiply(cameraMatrix.t(), fundamental, E); // cameraMatrix.t()*fundamental*cameraMatrix;
Core.multiply(E, cameraMatrix, E);

Mat R = new Mat();
Mat.zeros(3, 3, CvType.CV_64FC1).copyTo(R);

Mat T = new Mat();

calculateRT(E, R, T);

where `calculateRT` is defined as follows:

private void calculateRT(Mat E, Mat R, Mat T) {

    /*
     * //-- Step 6: calculate Rotation Matrix and Translation Vector
        Matx34d P;
        //decompose E 
        SVD svd(E,SVD::MODIFY_A);
        Mat svd_u = svd.u;
        Mat svd_vt = svd.vt;
        Mat svd_w = svd.w;
        Matx33d W(0,-1,0,1,0,0,0,0,1);//HZ 9.13
        Mat_<double> R = svd_u * Mat(W) * svd_vt; //
        Mat_<double> T = svd_u.col(2); //u3

        if (!CheckCoherentRotation (R)) {
            std::cout<<"resulting rotation is not coherent\n";
            return 0;
        }
     */
    Mat w = new Mat();
    Mat u = new Mat();
    Mat vt = new Mat();

    Core.SVDecomp(E, w, u, vt, Core.DECOMP_SVD); // Maybe use flags
    Mat W = new Mat(new Size(3,3), CvType.CV_64FC1);
    W.put(0, 0, W_Values);

    Core.multiply(u, W, R);
    Core.multiply(R, vt, R);

    T = u.col(2);
}

以下是计算后和计算过程中所有矩阵的结果。

    Number matches: 10299
    Number of good matches: 590
    Number of obj_points left: 590.0


         CameraMatrix: 
                        [1133.601684570312,         0,             639.5;
                               0 ,          1133.601684570312,     383.5;
                               0,                   0,               1]


       DistortionCoeff: [0.06604336202144623; 0.21129509806633; 0; 0; -1.206771731376648]


    Fundamental: 
    [4.209958176688844e-08, -8.477216249742946e-08, 9.132798068178793e-05;
    3.165719895008366e-07, 6.437858397735847e-07, -0.0006976204595236443;
    0.0004532506630569588, -0.0009224427024602799, 1]

    Essential: 
    [0.05410018455525099, 0, 0;
    0, 0.8272987826496967, 0;
    0, 0, 1]

    U: (SVD)
    [0, 0, 1;
     0, 0.9999999999999999, 0;
     1, 0, 0]

    W: (SVD) 
    [1; 0.8272987826496967; 0.05410018455525099]

    vt: (SVD)
    [0, 0, 1;
     0, 1, 0;
     1, 0, 0]


    R: 
    [0, 0, 0;
     0, 0, 0;
     0, 0, 0]

    T: 
    [1; 0; 0]

完成此处的是我正在使用的图片:leftright

在制作FeaturePoints等之前,我正在对图像进行不正确的处理。

有人可以指出出错的地方或我做错了吗?

编辑:问题 我的基本矩阵是否可能与基本矩阵相等,因为我处于校准状态,Hartley和zissermann说:

“11.7.3校准案例: 在校准相机的情况下,可以使用归一化图像坐标,并且计算基本矩阵E而不是基本矩阵“

2 个答案:

答案 0 :(得分:1)

我发现了错误。这段代码没有做正确的矩阵乘法。

  Mat E = new Mat();
  Core.multiply(cameraMatrix.t(),fundamental, E); 
  Core.multiply(E, cameraMatrix, E);

我将此更改为

  Core.gemm(cameraMatrix.t(), fundamental, 1, cameraMatrix, 1, E);

现在正在进行正确的矩阵乘法。据我所知,Core.multiply正在为每个元素进行乘法运算。不是row * col。的点积。

答案 1 :(得分:0)

首先,除非您通过明确考虑相机矩阵的倒数计算基本矩阵,否则您不在校准情况下,因此您估计的基本矩阵不是必要矩阵。这也很容易测试:你只需要对基本矩阵进行特征分解,看看这两个非零特征值是否相等(参见Hartley&amp; Zisserman's book中的第9.6.1节)。

其次,基本矩阵和基本矩阵都是针对两个摄像头定义的,如果只考虑一个摄像头则没有意义。如果你有两个相机,各自的矩阵K 1 和K 2 ,那么你可以得到基本矩阵E 12 ,给定基本矩阵F 12 (将I 1 中的点映射到I 2 中的行),使用下面的公式(参见Hartley&amp; Zisserman's中的公式9.12)书):

E 12 = K 2 T 。 F 12 。 ķ<子> 1

在您的情况下,您在两侧都使用了K 2