有人可以建议修复或替代路线来查找此系统的解决方案吗? 特别是我只关心[0,1] x [0,1]
中的解(s,t)注意:我在这里寻找两条三次Bezier曲线的交集。我需要保证找到所有解决方案的方法,并希望在合理的时间内(对于我的使用,这意味着每对曲线几秒钟)。
我尝试使用sympy,但solve()和solve_poly_system()都返回了空列表。
这是我的代码:
from sympy.solvers import solve_poly_system, solve
from sympy.abc import s,t
#here are two cubics. I'm looking for their intersection in [0,1]x[0,1]:
cub1 = 600*s**3 - 1037*s**2 + 274*s + 1237*t**3 - 2177*t**2 + 642*t + 77
cub2 = -534*s**3 + 582*s**2 + 437*s + 740*t**3 - 1817*t**2 + 1414*t - 548
#I know such a solution exists (from plotting these curves) and fsolve finds an approximation of it no problem:
from scipy.optimize import fsolve
fcub1 = lambda (s,t): 600*s**3 - 1037*s**2 + 274*s + 1237*t**3 - 2177*t**2 + 642*t + 77
fcub2 = lambda (s,t):-534*s**3 + 582*s**2 + 437*s + 740*t**3 - 1817*t**2 + 1414*t - 548
F = lambda x: [fcub1(x),fcub2(x)]
print 'fsolve gives (s,t) = ' + str(fsolve(F,(0.5,0.5)))
print 'F(s,t) = ' + str(F(fsolve(F,(0.5,0.5))))
#solve returns an empty list
print solve([cub1,cub2])
#solve_poly_system returns a DomainError: can't compute a Groebner basis over RR
print solve_poly_system([cub1,cub2])
输出:
fsolve gives (s,t) = [ 0.35114023 0.50444115]
F(s,t) = [4.5474735088646412e-13, 0.0]
[]
[]
感谢阅读!
答案 0 :(得分:4)
对于Béziers的交叉点,有更好的方法。 (http://pomax.github.io/bezierinfo/#curveintersection,http://www.tsplines.com/technology/edu/CurveIntersection.pdf)。
我对简单解决方案的建议:实施Bezier细分算法(http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html)。对于这两条曲线,计算控制顶点的边界框。如果它们重叠,则可以交叉,用一半细分并重复该过程(这次将进行四次比较)。继续递归。
你不能害怕指数爆炸(1,4,16,256 ......比较),因为很快就会有很多盒子停止重叠。
请注意,理论上你可以使用控制点的凸包,但实际上,一个简单的边界框就足够了,而且更容易使用。
答案 1 :(得分:1)
Yves的解决方案效果很好。这是我的代码,以防它帮助任何人:
from math import sqrt
def cubicCurve(P,t):
return P[0]*(1-t)**3 + 3*P[1]*t*(1-t)**2 + 3*P[2]*(1-t)*t**2 + P[3]*t**3
def cubicMinMax_x(points):
local_extremizers = [0,1]
a = [p.real for p in points]
delta = a[1]**2 - (a[0] + a[1]*a[2] + a[2]**2 + (a[0] - a[1])*a[3])
if delta>=0:
sqdelta = sqrt(delta)/(a[0] - 3*a[1] + 3*a[2] - a[3])
tau = a[0] - 2*a[1] + a[2]
r1 = tau+sqdelta
r2 = tau-sqdelta
if 0<r1<1:
local_extremizers.append(r1)
if 0<r2<1:
local_extremizers.append(r2)
localExtrema = [cubicCurve(a,t) for t in local_extremizers]
return min(localExtrema),max(localExtrema)
def cubicMinMax_y(points):
return cubicMinMax_x([-1j*p for p in points])
def intervalIntersectionWidth(a,b,c,d): #returns width of the intersection of intervals [a,b] and [c,d] (thinking of these as intervals on the real number line)
return max(0, min(b, d) - max(a, c))
def cubicBoundingBoxesIntersect(cubs):#INPUT: 2-tuple of cubics (given bu control points) #OUTPUT: boolean
x1min,x1max = cubicMinMax_x(cubs[0])
y1min,y1max = cubicMinMax_y(cubs[0])
x2min,x2max = cubicMinMax_x(cubs[1])
y2min,y2max = cubicMinMax_y(cubs[1])
if intervalIntersectionWidth(x1min,x1max,x2min,x2max) and intervalIntersectionWidth(y1min,y1max,y2min,y2max):
return True
else:
return False
def cubicBoundingBoxArea(cub_points):#INPUT: 2-tuple of cubics (given bu control points) #OUTPUT: boolean
xmin,xmax = cubicMinMax_x(cub_points)
ymin,ymax = cubicMinMax_y(cub_points)
return (xmax-xmin)*(ymax-ymin)
def halveCubic(P):
return ([P[0], (P[0]+P[1])/2, (P[0]+2*P[1]+P[2])/4, (P[0]+3*P[1]+3*P[2]+P[3])/8],[(P[0]+3*P[1]+3*P[2]+P[3])/8,(P[1]+2*P[2]+P[3])/4,(P[2]+P[3])/2,P[3]])
class Pair(object):
def __init__(self,cub1,cub2,t1,t2):
self.cub1 = cub1
self.cub2 = cub2
self.t1 = t1 #the t value to get the mid point of this curve from cub1
self.t2 = t2 #the t value to get the mid point of this curve from cub2
def cubicXcubicIntersections(cubs):
#INPUT: a tuple cubs=([P0,P1,P2,P3], [Q0,Q1,Q2,Q3]) defining the two cubic to check for intersections between. See cubicCurve fcn for definition of P0,...,P3
#OUTPUT: a list of tuples (t,s) in [0,1]x[0,1] such that cubicCurve(cubs[0],t) - cubicCurve(cubs[1],s) < Tol_deC
#Note: This will return exactly one such tuple for each intersection (assuming Tol_deC is small enough)
Tol_deC = 1 ##### This should be set based on your accuracy needs. Making it smaller will have relatively little effect on performance. Mine is set to 1 because this is the area of a pixel in my setup and so the curve (drawn by hand/mouse) is only accurate up to a pixel at most.
maxIts = 100 ##### This should be something like maxIts = 1-log(Tol_deC/length)/log(2), where length is the length of the longer of the two cubics, but I'm not actually sure how close to being parameterized by arclength these curves are... so I guess I'll leave that as an exercise for the interested reader :)
pair_list = [Pair(cubs[0],cubs[1],0.5,0.5)]
intersection_list = []
k=0
while pair_list != []:
newPairs = []
delta = 0.5**(k+2)
for pair in pair_list:
if cubicBoundingBoxesIntersect((pair.cub1,pair.cub2)):
if cubicBoundingBoxArea(pair.cub1)<Tol_deC and cubicBoundingBoxArea(pair.cub2)<Tol_deC:
intersection_list.append((pair.t1,pair.t2)) #this is the point in the middle of the pair
for otherPair in pair_list:
if pair.cub1==otherPair.cub1 or pair.cub2==otherPair.cub2 or pair.cub1==otherPair.cub2 or pair.cub2==otherPair.cub1:
pair_list.remove(otherPair) #this is just an ad-hoc fix to keep it from repeating intersection points
else:
(c11,c12) = halveCubic(pair.cub1)
(t11,t12) = (pair.t1-delta,pair.t1+delta)
(c21,c22) = halveCubic(pair.cub2)
(t21,t22) = (pair.t2-delta,pair.t2+delta)
newPairs += [Pair(c11,c21,t11,t21), Pair(c11,c22,t11,t22), Pair(c12,c21,t12,t21), Pair(c12,c22,t12,t22)]
pair_list = newPairs
k += 1
if k > maxIts:
raise Exception ("cubicXcubicIntersections has reached maximum iterations without terminating... either there's a problem/bug or you can fix by raising the max iterations or lowering Tol_deC")
return intersection_list
另外,如果有人想要它,我写了编码de Casteljau的算法,用于分割任意度数的Bezier曲线。在上面的代码中,我只是将其替换为halveCubic,这只是de Casteljau的方法,但明确并限制为立方情形(t = 0.5)。
def splitBezier(points,t):
#returns 2 tuples of control points for the two resulting Bezier curves
points_left=[]
points_right=[]
(points_left,points_right) = splitBezier_deCasteljau_recursion((points_left,points_right),points,t)
points_right.reverse()
return (points_left,points_right)
def splitBezier_deCasteljau_recursion(cub_lr,points,t):
(cub_left,cub_right)=cub_lr
if len(points)==1:
cub_left.append(points[0])
cub_right.append(points[0])
else:
n = len(points)-1
newPoints=[None]*n
cub_left.append(points[0])
cub_right.append(points[n])
for i in range(n):
newPoints[i] = (1-t)*points[i] + t*points[i+1]
(cub_left, cub_right) = splitBezier_deCasteljau_recursion((cub_left,cub_right),newPoints,t)
return (cub_left, cub_right)
我希望能帮到那里的人! 再次感谢你帮助Yves!
答案 2 :(得分:0)
如何简化系统?
通过合适的线性组合,您可以消除s^3
或t^3
中的一个,并求解剩余的二次方程。通过将结果插入另一个等式中,您可以在单个未知数中获得单个等式。
或者求解由结果得到的代数方程:
36011610661302281 - 177140805507270756*s - 201454039857766711*s^2 + 1540826307929388607*s^3 + 257712262726095899*s^4 - 4599101672917940010*s^5 + 1114665205197856508*s^6 + 6093758014794453276*s^7 - 5443785088068396888*s^8 + 1347614193395309112*s^9 = 0