对于n个变量,存在2 ^(2 ^ n)个不同的布尔函数。例如,如果n = 2,则存在16种可能的布尔函数,这些函数可以以产品形式或和形式的乘积的总和来编写。可能的函数数量随着n。指数呈指数增长。
我正在寻找一种能够为n个变量生成所有这些可能的布尔规则的算法。我试图在各个地方搜索,但到目前为止还没有找到合适的地方。大多数算法都与将布尔函数简化或简化为标准形式有关。
我知道即使对于n = 8或9,规则的数量也会变得太大,但如果存在相关算法,有人可以帮助我吗?
答案 0 :(得分:8)
n 变量的布尔函数具有 2 ^ n 可能的输入。这些可以通过打印0 <= x < 2^n
范围内的值的二进制表示来枚举。
对于每个可能的输入,布尔函数可以输出 0 或 1 。列举所有可能性(即每个可能的真值表)。列出范围0 <= x < 2^(2^n)
中的二进制值。
这是Python中的算法:
from __future__ import print_function
from itertools import product # forms cartesian products
n = 3 # number of variables
print('All possible truth tables for n =', n)
inputs = list(product([0, 1], repeat=n))
for output in product([0, 1], repeat=len(inputs)):
print()
print('Truth table')
print('-----------')
for row, result in zip(inputs, output):
print(row, '-->', result)
输出如下:
All possible truth tables for n = 3
Truth table
-----------
(0, 0, 0) --> 0
(0, 0, 1) --> 0
(0, 1, 0) --> 0
(0, 1, 1) --> 0
(1, 0, 0) --> 0
(1, 0, 1) --> 0
(1, 1, 0) --> 0
(1, 1, 1) --> 0
Truth table
-----------
(0, 0, 0) --> 0
(0, 0, 1) --> 0
(0, 1, 0) --> 0
(0, 1, 1) --> 0
(1, 0, 0) --> 0
(1, 0, 1) --> 0
(1, 1, 0) --> 0
(1, 1, 1) --> 1
Truth table
-----------
(0, 0, 0) --> 0
(0, 0, 1) --> 0
(0, 1, 0) --> 0
(0, 1, 1) --> 0
(1, 0, 0) --> 0
(1, 0, 1) --> 0
(1, 1, 0) --> 1
(1, 1, 1) --> 0
Truth table
-----------
(0, 0, 0) --> 0
(0, 0, 1) --> 0
(0, 1, 0) --> 0
(0, 1, 1) --> 0
(1, 0, 0) --> 0
(1, 0, 1) --> 0
(1, 1, 0) --> 1
(1, 1, 1) --> 1
... and so on
如果你想要以代数形式而不是真值表输出,那么算法是相同的:
from __future__ import print_function
from itertools import product # forms cartesian products
n = 3 # number of variables
variables = 'abcdefghijklmnopqrstuvwxyz'[:n]
pairs = [('~'+var, var) for var in variables]
print('All possible algebraic expressions for n =', n)
inputs = list(product(*pairs))
for i, outputs in enumerate(product([0, 1], repeat=len(inputs))):
terms = [''.join(row) for row, output in zip(inputs, outputs) if output]
if not terms:
terms = ['False']
print('Function %d:' % i, ' or '.join(terms))
输出如下:
All possible algebraic expressions for n = 3
Function 0: False
Function 1: abc
Function 2: ab~c
Function 3: ab~c or abc
Function 4: a~bc
Function 5: a~bc or abc
Function 6: a~bc or ab~c
Function 7: a~bc or ab~c or abc
Function 8: a~b~c
Function 9: a~b~c or abc
Function 10: a~b~c or ab~c
Function 11: a~b~c or ab~c or abc
Function 12: a~b~c or a~bc
Function 13: a~b~c or a~bc or abc
Function 14: a~b~c or a~bc or ab~c
Function 15: a~b~c or a~bc or ab~c or abc
Function 16: ~abc
Function 17: ~abc or abc
Function 18: ~abc or ab~c
Function 19: ~abc or ab~c or abc
Function 20: ~abc or a~bc
Function 21: ~abc or a~bc or abc
Function 22: ~abc or a~bc or ab~c
Function 23: ~abc or a~bc or ab~c or abc
Function 24: ~abc or a~b~c
Function 25: ~abc or a~b~c or abc
Function 26: ~abc or a~b~c or ab~c
Function 27: ~abc or a~b~c or ab~c or abc
Function 28: ~abc or a~b~c or a~bc
Function 29: ~abc or a~b~c or a~bc or abc
Function 30: ~abc or a~b~c or a~bc or ab~c
Function 31: ~abc or a~b~c or a~bc or ab~c or abc
Function 32: ~ab~c
Function 33: ~ab~c or abc
... and so on
答案 1 :(得分:3)
正如评论中所提到的,数字与真值表之间存在一对一的关系。例如,我们可以代表真值表
0 0 0 | 1
0 0 1 | 1
0 1 0 | 0
0 1 1 | 0
1 0 0 | 1
1 0 1 | 0
1 1 0 | 1
1 1 1 | 0
由二进制数01010011
(最上面的行由最低有效位表示)。
显然只是循环数字来生成这些表示:
for f := 0 to 2^(2^n) - 1:
# do something with f
我们可以对f
做些什么?例如,我们可以对其进行评估。假设我们想知道f(0,1,0)
。它就像将二进制数x = 010
解释为一样简单并做一些魔术一样简单:
def evaluate(f, x):
return (f & (1<<x)) != 0
我们也可以通过检查哪些位是0来找到它的析取范式:
def dnf(f):
for x := 0 to 2^n - 1:
if f & (1<<x) != 0:
print binary(x) + " OR "
为上述功能提供000 OR 001 OR 100 OR 110 (OR)
之类的结果。
答案 2 :(得分:2)
我已经更改了Raymond Hettinger发布的代码。 现在你可以:
代码:
from itertools import product
def allBooleanFunctions(kk):
"""Finds all Boolean functions for indegree kk"""
inputs1 = list(product([0, 1], repeat=kk))
variables = 'abcdefghijklmnopqrstuvwxyz'[:kk]
pairs = [('( not '+var+' )', var) for var in variables]
inputs = list(product(*pairs))
bool_func=[]
for i, outputs in enumerate(product([0, 1], repeat=len(inputs))):
terms = [' and '.join(row) for row, output in zip(inputs, outputs) if output]
if not terms:
terms = ['False']
bool_func.append(('('+(') or ('.join(terms))+')'))
return bool_func
n_ary=2 # number of inputs; keep it n_ary<=5
boolean_function_analytical=allBooleanFunctions(n_ary)
print('All Boolean functions of indegree:'+str(n_ary)+'\n')
print(boolean_function_analytical)
print
print('A Boolean function:'+'\n')
print(boolean_function_analytical[2])
# Evaluate third boolean function:
a=1 # first input
b=0 # second input
c=0 # third input
d=0 # fourth input
print('a='+str(a)+'; b='+str(b)+'; c='+str(c)+'; d='+str(d)+'\n')
print('Evaluation in 0/1 manner:')
print(int(eval((boolean_function_analytical[2]))))
print('Evaluation in True/False manner:')
print(bool(eval((boolean_function_analytical[2]))))
结果:
All Boolean functions of indegree:2
['(False)', '(a and b)', '(a and ( not b ))', '(a and ( not b )) or (a and b)', '(( not a ) and b)', '(( not a ) and b) or (a and b)', '(( not a ) and b) or (a and ( not b ))', '(( not a ) and b) or (a and ( not b )) or (a and b)', '(( not a ) and ( not b ))', '(( not a ) and ( not b )) or (a and b)', '(( not a ) and ( not b )) or (a and ( not b ))', '(( not a ) and ( not b )) or (a and ( not b )) or (a and b)', '(( not a ) and ( not b )) or (( not a ) and b)', '(( not a ) and ( not b )) or (( not a ) and b) or (a and b)', '(( not a ) and ( not b )) or (( not a ) and b) or (a and ( not b ))', '(( not a ) and ( not b )) or (( not a ) and b) or (a and ( not b )) or (a and b)']
A Boolean function:
(a and ( not b ))
a=1; b=0; c=0; d=0
Evaluation in 0/1 manner:
1
Evaluation in True/False manner:
True
玩得开心!!!