output = RBugsfit(..., coda=T, ...)
输出一个mcmc.list对象,其中包含四个参数的后验分布样本及其样本后验均值。使用summary()
我可以看到样本后验的意思,但我想知道如何将output
中的样本后验方法检索到我程序中的变量中?谢谢!
> summary(output)
Iterations = 201:3396
Thinning interval = 5
Number of chains = 2
Sample size per chain = 640
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
beta 1.052e+00 3.189e-02 8.914e-04 9.185e-04
df 3.849e+00 2.916e-01 8.150e-03 1.516e-02
sigma 1.056e-02 2.504e-04 6.998e-06 1.000e-05
tau 8.990e+03 4.273e+02 1.194e+01 1.710e+01
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
beta 9.891e-01 1.032e+00 1.052e+00 1.073e+00 1.113e+00
df 3.304e+00 3.650e+00 3.836e+00 4.042e+00 4.450e+00
sigma 1.004e-02 1.039e-02 1.055e-02 1.072e-02 1.105e-02
tau 8.197e+03 8.700e+03 8.977e+03 9.263e+03 9.917e+03
> str(output)
List of 2
$ : mcmc [1:640, 1:4] 1.1 1.03 1.05 1.12 1.07 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta" "df" "sigma" "tau"
..- attr(*, "mcpar")= num [1:3] 201 3396 5
$ : mcmc [1:640, 1:4] 1.03 1.04 1.06 1.06 1.07 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta" "df" "sigma" "tau"
..- attr(*, "mcpar")= num [1:3] 201 3396 5
- attr(*, "class")= chr "mcmc.list"
答案 0 :(得分:1)
我通常使用两种方式:
1)使用摘要(假设输出是mcmc.list类):
s <- summary(output)
m <- s$statistics[,"Mean"]
2)自己做:
mt <- as.matrix(output)
m <- apply(mt, 2, mean)