我在matlab中搜索有效的逻辑回归实现。我在matlab中使用了lassoglm。但是当我尝试10000个具有1000个特征和正则化参数0.005到1的示例时,它确实很慢。我使用双折交叉验证。从lambda 0.05开始,它非常慢,需要花费很多时间。
有没有更好的方法?
答案 0 :(得分:0)
您可能想查看LIBLINEAR。它是一个免费的,最先进的线性大规模学习库。它有一个MATLAB接口。
LIBLINEAR有几种线性方法,包括:
for multi-class classification
0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classification (dual)
2 -- L2-regularized L2-loss support vector classification (primal)
3 -- L2-regularized L1-loss support vector classification (dual)
4 -- support vector classification by Crammer and Singer
5 -- L1-regularized L2-loss support vector classification
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)
for regression
11 -- L2-regularized L2-loss support vector regression (primal)
12 -- L2-regularized L2-loss support vector regression (dual)
13 -- L2-regularized L1-loss support vector regression (dual)