C ++中高数字的模块化指数

时间:2010-02-05 12:04:10

标签: c++ modulo integer-overflow exponentiation

所以我最近一直在努力实施Miller-Rabin素性测试。我将它限制在所有32位数字的范围内,因为这是一个非常有趣的项目,我正在做的是熟悉c ++,我不想使用64位的任何东西。一会儿。另外一个好处是该算法对于所有32位数字都是确定性的,因此我可以显着提高效率,因为我确切知道要测试的证人。

因此对于较低的数字,该算法非常有效。但是,该过程的一部分依赖于模幂运算,即(num ^ pow)%mod。所以,例如,

3 ^ 2 % 5 = 
9 % 5 = 
4

这是我用于此模幂运算的代码:

unsigned mod_pow(unsigned num, unsigned pow, unsigned mod)
{
    unsigned test;
    for(test = 1; pow; pow >>= 1)
    {
        if (pow & 1)
            test = (test * num) % mod;
        num = (num * num) % mod;
    }

    return test;

}

正如您可能已经猜到的那样,当参数都是特别大的数字时会出现问题。例如,如果我想测试数字673109的素数,我将在某一点上找到:

(2 ^ 168277)%673109

现在2 ^ 168277是一个特别大的数字,并且在过程的某个地方它会溢出测试,这导致不正确的评估。

反面,参数如

4000111222 ^ 3%1608

由于同样的原因,

也评估不正确。

有没有人对模块取幂有什么建议,可以防止这种溢出和/或操纵它产生正确的结果? (我看到它的方式,溢出只是模数的另一种形式,即num%(UINT_MAX + 1))

6 个答案:

答案 0 :(得分:7)

Exponentiation by squaring对于模幂运算仍然“有效”。你的问题不在于2 ^ 168277是一个特别大的数字,而是你的一个中间结果是一个相当大的数字(大于2 ^ 32),因为673109大于2 ^ 16。

所以我认为以下情况会如此。我可能错过了一个细节,但基本的想法是有效的,这就是“真正的”加密代码可以做大型模幂运算的方式(虽然不是32位和64位数,而是使用的bignums永远不会超过2 * log(模数)):

  • 按照你的方式通过平方开始取幂。
  • 以64位无符号整数执行实际平方。
  • 在每一步减少模数673109以恢复到32位范围内,就像你一样。

显然,如果你的C ++实现没有64位整数,那会有点尴尬,尽管你总是假装一个。

幻灯片22上有一个示例:http://www.cs.princeton.edu/courses/archive/spr05/cos126/lectures/22.pdf,虽然它使用非常小的数字(小于2 ^ 16),但它可能无法说明您不知道的任何内容。

您的另一个例子,如果您在开始之前简化4000111222 ^ 3 % 16084000111222,那么1608将适用于您当前的代码。 1608足够小,你可以安全地将32位int中的任何两个mod-1608数字相乘。

答案 1 :(得分:5)

我最近在C ++中为RSA写了一些东西,虽然有些混乱。

#include "BigInteger.h"
#include <iostream>
#include <sstream>
#include <stack>

BigInteger::BigInteger() {
    digits.push_back(0);
    negative = false;
}

BigInteger::~BigInteger() {
}

void BigInteger::addWithoutSign(BigInteger& c, const BigInteger& a, const BigInteger& b) {
    int sum_n_carry = 0;
    int n = (int)a.digits.size();
    if (n < (int)b.digits.size()) {
        n = b.digits.size();
    }
    c.digits.resize(n);
    for (int i = 0; i < n; ++i) {
        unsigned short a_digit = 0;
        unsigned short b_digit = 0;
        if (i < (int)a.digits.size()) {
            a_digit = a.digits[i];
        }
        if (i < (int)b.digits.size()) {
            b_digit = b.digits[i];
        }
        sum_n_carry += a_digit + b_digit;
        c.digits[i] = (sum_n_carry & 0xFFFF);
        sum_n_carry >>= 16;
    }
    if (sum_n_carry != 0) {
        putCarryInfront(c, sum_n_carry);
    }
    while (c.digits.size() > 1 && c.digits.back() == 0) {
        c.digits.pop_back();
    }
    //std::cout << a.toString() << " + " << b.toString() << " == " << c.toString() << std::endl;
}

void BigInteger::subWithoutSign(BigInteger& c, const BigInteger& a, const BigInteger& b) {
    int sub_n_borrow = 0;
    int n = a.digits.size();
    if (n < (int)b.digits.size())
        n = (int)b.digits.size();
    c.digits.resize(n);
    for (int i = 0; i < n; ++i) {
        unsigned short a_digit = 0;
        unsigned short b_digit = 0;
        if (i < (int)a.digits.size())
            a_digit = a.digits[i];
        if (i < (int)b.digits.size())
            b_digit = b.digits[i];
        sub_n_borrow += a_digit - b_digit;
        if (sub_n_borrow >= 0) {
            c.digits[i] = sub_n_borrow;
            sub_n_borrow = 0;
        } else {
            c.digits[i] = 0x10000 + sub_n_borrow;
            sub_n_borrow = -1;
        }
    }
    while (c.digits.size() > 1 && c.digits.back() == 0) {
        c.digits.pop_back();
    }
    //std::cout << a.toString() << " - " << b.toString() << " == " << c.toString() << std::endl;
}

int BigInteger::cmpWithoutSign(const BigInteger& a, const BigInteger& b) {
    int n = (int)a.digits.size();
    if (n < (int)b.digits.size())
        n = (int)b.digits.size();
    //std::cout << "cmp(" << a.toString() << ", " << b.toString() << ") == ";
    for (int i = n-1; i >= 0; --i) {
        unsigned short a_digit = 0;
        unsigned short b_digit = 0;
        if (i < (int)a.digits.size())
            a_digit = a.digits[i];
        if (i < (int)b.digits.size())
            b_digit = b.digits[i];
        if (a_digit < b_digit) {
            //std::cout << "-1" << std::endl;
            return -1;
        } else if (a_digit > b_digit) {
            //std::cout << "+1" << std::endl;
            return +1;
        }
    }
    //std::cout << "0" << std::endl;
    return 0;
}

void BigInteger::multByDigitWithoutSign(BigInteger& c, const BigInteger& a, unsigned short b) {
    unsigned int mult_n_carry = 0;
    c.digits.clear();
    c.digits.resize(a.digits.size());
    for (int i = 0; i < (int)a.digits.size(); ++i) {
        unsigned short a_digit = 0;
        unsigned short b_digit = b;
        if (i < (int)a.digits.size())
            a_digit = a.digits[i];
        mult_n_carry += a_digit * b_digit;
        c.digits[i] = (mult_n_carry & 0xFFFF);
        mult_n_carry >>= 16;
    }
    if (mult_n_carry != 0) {
        putCarryInfront(c, mult_n_carry);
    }
    //std::cout << a.toString() << " x " << b << " == " << c.toString() << std::endl;
}

void BigInteger::shiftLeftByBase(BigInteger& b, const BigInteger& a, int times) {
    b.digits.resize(a.digits.size() + times);
    for (int i = 0; i < times; ++i) {
        b.digits[i] = 0;
    }
    for (int i = 0; i < (int)a.digits.size(); ++i) {
        b.digits[i + times] = a.digits[i];
    }
}

void BigInteger::shiftRight(BigInteger& a) {
    //std::cout << "shr " << a.toString() << " == ";
    for (int i = 0; i < (int)a.digits.size(); ++i) {
        a.digits[i] >>= 1;
        if (i+1 < (int)a.digits.size()) {
            if ((a.digits[i+1] & 0x1) != 0) {
                a.digits[i] |= 0x8000;
            }
        }
    }
    //std::cout << a.toString() << std::endl;
}

void BigInteger::shiftLeft(BigInteger& a) {
    bool lastBit = false;
    for (int i = 0; i < (int)a.digits.size(); ++i) {
        bool bit = (a.digits[i] & 0x8000) != 0;
        a.digits[i] <<= 1;
        if (lastBit)
            a.digits[i] |= 1;
        lastBit = bit;
    }
    if (lastBit) {
        a.digits.push_back(1);
    }
}

void BigInteger::putCarryInfront(BigInteger& a, unsigned short carry) {
    BigInteger b;
    b.negative = a.negative;
    b.digits.resize(a.digits.size() + 1);
    b.digits[a.digits.size()] = carry;
    for (int i = 0; i < (int)a.digits.size(); ++i) {
        b.digits[i] = a.digits[i];
    }
    a.digits.swap(b.digits);
}

void BigInteger::divideWithoutSign(BigInteger& c, BigInteger& d, const BigInteger& a, const BigInteger& b) {
    c.digits.clear();
    c.digits.push_back(0);
    BigInteger two("2");
    BigInteger e = b;
    BigInteger f("1");
    BigInteger g = a;
    BigInteger one("1");
    while (cmpWithoutSign(g, e) >= 0) {
        shiftLeft(e);
        shiftLeft(f);
    }
    shiftRight(e);
    shiftRight(f);
    while (cmpWithoutSign(g, b) >= 0) {
        g -= e;
        c += f;
        while (cmpWithoutSign(g, e) < 0) {
            shiftRight(e);
            shiftRight(f);
        }
    }
    e = c;
    e *= b;
    f = a;
    f -= e;
    d = f;
}

BigInteger::BigInteger(const BigInteger& other) {
    digits = other.digits;
    negative = other.negative;
}

BigInteger::BigInteger(const char* other) {
    digits.push_back(0);
    negative = false;
    BigInteger ten;
    ten.digits[0] = 10;
    const char* c = other;
    bool make_negative = false;
    if (*c == '-') {
        make_negative = true;
        ++c;
    }
    while (*c != 0) {
        BigInteger digit;
        digit.digits[0] = *c - '0';
        *this *= ten;
        *this += digit;
        ++c;
    }
    negative = make_negative;
}

bool BigInteger::isOdd() const {
    return (digits[0] & 0x1) != 0;
}

BigInteger& BigInteger::operator=(const BigInteger& other) {
    if (this == &other) // handle self assignment
        return *this;
    digits = other.digits;
    negative = other.negative;
    return *this;
}

BigInteger& BigInteger::operator+=(const BigInteger& other) {
    BigInteger result;
    if (negative) {
        if (other.negative) {
            result.negative = true;
            addWithoutSign(result, *this, other);
        } else {
            int a = cmpWithoutSign(*this, other);
            if (a < 0) {
                result.negative = false;
                subWithoutSign(result, other, *this);
            } else if (a > 0) {
                result.negative = true;
                subWithoutSign(result, *this, other);
            } else {
                result.negative = false;
                result.digits.clear();
                result.digits.push_back(0);
            }
        }
    } else {
        if (other.negative) {
            int a = cmpWithoutSign(*this, other);
            if (a < 0) {
                result.negative = true;
                subWithoutSign(result, other, *this);
            } else if (a > 0) {
                result.negative = false;
                subWithoutSign(result, *this, other);
            } else {
                result.negative = false;
                result.digits.clear();
                result.digits.push_back(0);
            }
        } else {
            result.negative = false;
            addWithoutSign(result, *this, other);
        }
    }
    negative = result.negative;
    digits.swap(result.digits);
    return *this;
}

BigInteger& BigInteger::operator-=(const BigInteger& other) {
    BigInteger neg_other = other;
    neg_other.negative = !neg_other.negative;
    return *this += neg_other;
}

BigInteger& BigInteger::operator*=(const BigInteger& other) {
    BigInteger result;
    for (int i = 0; i < (int)digits.size(); ++i) {
        BigInteger mult;
        multByDigitWithoutSign(mult, other, digits[i]);
        BigInteger shift;
        shiftLeftByBase(shift, mult, i);
        BigInteger add;
        addWithoutSign(add, result, shift);
        result = add;
    }
    if (negative != other.negative) {
        result.negative = true;
    } else {
        result.negative = false;
    }
    //std::cout << toString() << " x " << other.toString() << " == " << result.toString() << std::endl;
    negative = result.negative;
    digits.swap(result.digits);
    return *this;
}

BigInteger& BigInteger::operator/=(const BigInteger& other) {
    BigInteger result, tmp;
    divideWithoutSign(result, tmp, *this, other);
    result.negative = (negative != other.negative);
    negative = result.negative;
    digits.swap(result.digits);
    return *this;
}

BigInteger& BigInteger::operator%=(const BigInteger& other) {
    BigInteger c, d;
    divideWithoutSign(c, d, *this, other);
    *this = d;
    return *this;
}

bool BigInteger::operator>(const BigInteger& other) const {
    if (negative) {
        if (other.negative) {
            return cmpWithoutSign(*this, other) < 0;
        } else {
            return false;
        }
    } else {
        if (other.negative) {
            return true;
        } else {
            return cmpWithoutSign(*this, other) > 0;
        }
    }
}

BigInteger& BigInteger::powAssignUnderMod(const BigInteger& exponent, const BigInteger& modulus) {
    BigInteger zero("0");
    BigInteger one("1");
    BigInteger e = exponent;
    BigInteger base = *this;
    *this = one;
    while (cmpWithoutSign(e, zero) != 0) {
        //std::cout << e.toString() << " : " << toString() << " : " << base.toString() << std::endl;
        if (e.isOdd()) {
            *this *= base;
            *this %= modulus;
        }
        shiftRight(e);
        base *= BigInteger(base);
        base %= modulus;
    }
    return *this;
}

std::string BigInteger::toString() const {
    std::ostringstream os;
    if (negative)
        os << "-";
    BigInteger tmp = *this;
    BigInteger zero("0");
    BigInteger ten("10");
    tmp.negative = false;
    std::stack<char> s;
    while (cmpWithoutSign(tmp, zero) != 0) {
        BigInteger tmp2, tmp3;
        divideWithoutSign(tmp2, tmp3, tmp, ten);
        s.push((char)(tmp3.digits[0] + '0'));
        tmp = tmp2;
    }
    while (!s.empty()) {
        os << s.top();
        s.pop();
    }
    /*
    for (int i = digits.size()-1; i >= 0; --i) {
        os << digits[i];
        if (i != 0) {
            os << ",";
        }
    }
    */
    return os.str();

一个示例用法。

BigInteger a("87682374682734687"), b("435983748957348957349857345"), c("2348927349872344")

// Will Calculate pow(87682374682734687, 435983748957348957349857345) % 2348927349872344
a.powAssignUnderMod(b, c);

它也很快,并且数字位数不受限制。

答案 2 :(得分:3)

两件事:

  • 您使用的是合适的数据类型吗?换句话说,UINT_MAX是否允许您将673109作为参数?

不,它没有,因为有一点你有你的代码不起作用,因为有一点你有num = 2^16num = ...导致溢出。使用更大的数据类型来保存此中间值。

  • 如何在每个可能的溢出机会中采用模数,例如:

    test = ((test % mod) * (num % mod)) % mod;

编辑:

unsigned mod_pow(unsigned num, unsigned pow, unsigned mod)
{
    unsigned long long test;
    unsigned long long n = num;
    for(test = 1; pow; pow >>= 1)
    {
        if (pow & 1)
            test = ((test % mod) * (n % mod)) % mod;
        n = ((n % mod) * (n % mod)) % mod;
    }

    return test; /* note this is potentially lossy */
}

int main(int argc, char* argv[])
{

    /* (2 ^ 168277) % 673109 */
    printf("%u\n", mod_pow(2, 168277, 673109));
    return 0;
}

答案 3 :(得分:1)

    package playTime;

    public class play {

        public static long count = 0; 
        public static long binSlots = 10; 
        public static long y = 645; 
        public static long finalValue = 1; 
        public static long x = 11; 

        public static void main(String[] args){

            int[] binArray = new int[]{0,0,1,0,0,0,0,1,0,1};  

            x = BME(x, count, binArray); 

            System.out.print("\nfinal value:"+finalValue);

        }

        public static long BME(long x, long count, int[] binArray){

            if(count == binSlots){
                return finalValue; 
            }

            if(binArray[(int) count] == 1){
                finalValue = finalValue*x%y; 
            }

            x = (x*x)%y; 
            System.out.print("Array("+binArray[(int) count]+") "
                            +"x("+x+")" +" finalVal("+              finalValue + ")\n");

            count++; 


            return BME(x, count,binArray); 
        }

    }

答案 4 :(得分:0)

LL适用于long long int

LL power_mod(LL a, LL k) {
    if (k == 0)
        return 1;
    LL temp = power(a, k/2);
    LL res;

    res = ( ( temp % P ) * (temp % P) ) % P;
    if (k % 2 == 1)
        res = ((a % P) * (res % P)) % P;
    return res;
}

使用上面的递归函数来查找数字的mod exp。这不会导致溢出,因为它以自下而上的方式计算。

示例测试运行: a = 2k = 168277显示输出为518358,这是正确的,并且该函数在O(log(k))时间内运行;

答案 5 :(得分:-1)

您可以使用以下身份:

(a * b)(mod m)===(a(mod m))*(b(mod m))(mod m)

尝试直接使用它并逐步改进。

    if (pow & 1)
        test = ((test % mod) * (num % mod)) % mod;
    num = ((num % mod) * (num % mod)) % mod;