Matlab中的Logistic回归梯度下降

时间:2014-02-20 19:15:00

标签: matlab machine-learning logistic-regression gradient-descent

这是代码

function [theta] = LR(D)
% D is the data having feature variables and class labels

% Now decompose D into X and C 
%Note that dimensions of X =  , C = 

C = D(:,1);
C = C';
size(C)
X = D(:,2:size(D,2));
size(X)
alpha = .00001;

theta_old = zeros(1,34);
theta_new = .001.*ones(1,34);
count = 1;
for count = 1:100000
    theta_old = theta_new;
    theta_new = theta_new + alpha*(C-sigmoid(X*theta_new')')*X;
    llr =  sum(LLR((X*theta_new').*(C'))) 
end
thetaopt = theta_new


end


function a = LLR( z )
a= 1.*log(1.0 + exp(-z));
end

function a = sigmoid(z)
 a = 1.0 ./ (1.0 + exp(-z));
 end

我遇到的问题是对数似然比首先降低,然后开始增加。这是Gradient Descent算法还是代码的问题。

1 个答案:

答案 0 :(得分:1)

看起来您的目标功能可能存在问题。

如果标签(C)位于{0,1},那么您应该使用损失C.*LLR(X*theta')+(1-C).*(LLR(X*theta')+X*theta')

如果您的标签位于{-1,1},则损失应为LLR(C.*X*theta')

您似乎只使用第一种类型的损失函数的第一部分。