我有一个场景,我想计算一个值的下降。
我的输入文件是csv,格式为:Key,Value,Timestamp
1,600,2014-01-20 10:20:00
1,1200,2014-01-20 10:30:00
...
2,2400,2014-01-30 11:20:00
2,3600,2014-01-30 11:30:00
...
可以有多个键,每个键可以有多个值,也可以记录一个时间戳。
我需要计算每个键随时间段的值的下降。
Decline = (V2-V1) / (t2-t1)
这里,时间t以秒为单位。
我的预期输出类似于
1,1
...
2,2
...
我写的MR代码看起来像这样,
import java.io.IOException;
import java.util.*;
import java.text.SimpleDateFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class TestMR
{
public static class Map extends Mapper<LongWritable,Text,Text,Text>
{
public void map(LongWritable key, Text line, Context context) throws IOException, InterruptedException
{
String [] split = line.toString().split(",");
long t1 = 0;
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try
{
t1 = df.parse(split[2]).getTime() / 1000;
}
catch (java.text.ParseException e)
{
System.out.println("Unable to parse date string: " + split[2]);
}
StringBuffer sb = new StringBuffer(split[1]+","+t1);
context.write(new Text(split[0]), new Text(sb.toString()));
}
}
public static class Reduce extends Reducer<Text,Text,Text,Text>
{
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException
{
Iterator iter = values.iterator();
while(iter.hasNext())
{
String [] tmpBuf_1 = iter.next().toString().split(",");
if(tmpBuf_1.length != 2)
continue;
String v1 = tmpBuf_1[0];
double t1 = Double.parseDouble(tmpBuf_1[1]);
if(!iter.hasNext())
break;
String [] tmpBuf_2 = iter.next().toString().split(",");
if(tmpBuf_2.length != 2)
continue;
String v2 = tmpBuf_2[0];
double t2 = Double.parseDouble(tmpBuf_2[1]);
double vDiff = Double.parseDouble(v2) - Double.parseDouble(v1);
double tDiff = t2 - t1;
if(tDiff == 0)
continue;
double declineV = vDiff / tDiff;
context.write(key, new Text(String.valueOf(declineV)));
}
}
}
public static int main(String[] args) throws Exception
{
// Get the default configuration object
Configuration conf = new Configuration();
// Add resources
conf.addResource("hdfs-default.xml");
conf.addResource("hdfs-site.xml");
conf.addResource("mapred-default.xml");
conf.addResource("mapred-site.xml");
conf.set("mapred.job.tracker", "local");
Job job = new Job(conf);
job.setJobName("TestMR");
job.setJarByClass(TestMR.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.setInputPaths(job, new Path(args[0]));
TextOutputFormat.setOutputPath(job, new Path(args[1]));
// Set the jar file to run
job.setJarByClass(Example.class);
// Submit the job
Date startTime = new Date();
System.out.println("Job started: " + startTime);
int exitCode = job.waitForCompletion(true) ? 0 : 1;
if( exitCode == 0)
{
Date end_time = new Date();
System.out.println("Job ended: " + end_time);
System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) / 1000 + " seconds.");
}
else {
System.out.println("Job Failed!!!");
}
return exitCode;
}
}
我在运行MR工作时没有输出! 以下是命令跟踪:
Job started: Sat Feb 08 16:36:07 PST 2014
14/02/08 16:36:07 WARN conf.Configuration: session.id is deprecated. Instead, use dfs.metrics.session-id
14/02/08 16:36:07 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
14/02/08 16:36:07 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
14/02/08 16:36:07 INFO input.FileInputFormat: Total input paths to process : 1
14/02/08 16:36:08 INFO mapred.JobClient: Running job: job_local2110196638_0001
14/02/08 16:36:08 INFO mapred.LocalJobRunner: OutputCommitter set in config null
14/02/08 16:36:08 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
14/02/08 16:36:08 INFO mapred.LocalJobRunner: Waiting for map tasks
14/02/08 16:36:08 INFO mapred.LocalJobRunner: Starting task: attempt_local2110196638_0001_m_000000_0
14/02/08 16:36:08 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead
14/02/08 16:36:08 INFO util.ProcessTree: setsid exited with exit code 0
14/02/08 16:36:08 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@524c71d2
14/02/08 16:36:08 INFO mapred.MapTask: Processing split: hdfs://localhost.localdomain:8020/user/cloudera/input.csv:0+33554432
14/02/08 16:36:08 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
14/02/08 16:36:08 INFO mapred.MapTask: io.sort.mb = 50
14/02/08 16:36:08 INFO mapred.MapTask: data buffer = 39845888/49807360
14/02/08 16:36:08 INFO mapred.MapTask: record buffer = 131072/163840
14/02/08 16:36:09 INFO mapred.JobClient: map 0% reduce 0%
In MAP!!
245,1334603716
14/02/08 16:36:14 INFO mapred.LocalJobRunner:
14/02/08 16:36:15 INFO mapred.JobClient: map 9% reduce 0%
14/02/08 16:36:16 INFO mapred.MapTask: Spilling map output: record full = true
14/02/08 16:36:16 INFO mapred.MapTask: bufstart = 0; bufend = 2620494; bufvoid = 49807360
14/02/08 16:36:16 INFO mapred.MapTask: kvstart = 0; kvend = 131072; length = 163840
14/02/08 16:36:16 INFO compress.CodecPool: Got brand-new compressor [.snappy]
In REDUCE!!
14/02/08 16:36:17 INFO mapred.LocalJobRunner:
14/02/08 16:36:17 INFO mapred.LocalJobRunner:
14/02/08 16:36:17 INFO mapred.MapTask: Starting flush of map output
14/02/08 16:36:18 INFO mapred.JobClient: map 49% reduce 0%
14/02/08 16:36:18 INFO mapred.MapTask: Finished spill 0
14/02/08 16:36:18 INFO mapred.MapTask: Finished spill 1
14/02/08 16:36:18 INFO mapred.Merger: Merging 2 sorted segments
14/02/08 16:36:18 INFO compress.CodecPool: Got brand-new decompressor [.snappy]
14/02/08 16:36:18 INFO compress.CodecPool: Got brand-new decompressor [.snappy]
14/02/08 16:36:18 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 339763 bytes
14/02/08 16:36:19 INFO mapred.Task: Task:attempt_local2110196638_0001_m_000000_0 is done. And is in the process of commiting
14/02/08 16:36:19 INFO mapred.LocalJobRunner:
14/02/08 16:36:19 INFO mapred.Task: Task 'attempt_local2110196638_0001_m_000000_0' done.
14/02/08 16:36:19 INFO mapred.LocalJobRunner: Finishing task: attempt_local2110196638_0001_m_000000_0
14/02/08 16:36:19 INFO mapred.LocalJobRunner: Starting task: attempt_local2110196638_0001_m_000001_0
14/02/08 16:36:19 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead
14/02/08 16:36:19 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@56a6cbf7
14/02/08 16:36:19 INFO mapred.MapTask: Processing split: hdfs://localhost.localdomain:8020/user/cloudera/input.csv:33554432+13261402
14/02/08 16:36:19 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
14/02/08 16:36:19 INFO mapred.MapTask: io.sort.mb = 50
14/02/08 16:36:19 INFO mapred.MapTask: data buffer = 39845888/49807360
14/02/08 16:36:19 INFO mapred.MapTask: record buffer = 131072/163840
14/02/08 16:36:20 INFO mapred.JobClient: map 50% reduce 0%
14/02/08 16:36:20 INFO mapred.LocalJobRunner:
14/02/08 16:36:20 INFO mapred.MapTask: Starting flush of map output
14/02/08 16:36:20 INFO mapred.MapTask: Finished spill 0
14/02/08 16:36:20 INFO mapred.Task: Task:attempt_local2110196638_0001_m_000001_0 is done. And is in the process of commiting
14/02/08 16:36:20 INFO mapred.LocalJobRunner:
14/02/08 16:36:20 INFO mapred.Task: Task 'attempt_local2110196638_0001_m_000001_0' done.
14/02/08 16:36:20 INFO mapred.LocalJobRunner: Finishing task: attempt_local2110196638_0001_m_000001_0
14/02/08 16:36:20 INFO mapred.LocalJobRunner: Map task executor complete.
14/02/08 16:36:20 WARN mapreduce.Counters: Group org.apache.hadoop.mapred.Task$Counter is deprecated. Use org.apache.hadoop.mapreduce.TaskCounter instead
14/02/08 16:36:20 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@64c5e2cf
14/02/08 16:36:20 INFO mapred.LocalJobRunner:
14/02/08 16:36:20 INFO mapred.Merger: Merging 2 sorted segments
14/02/08 16:36:20 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 496064 bytes
14/02/08 16:36:20 INFO mapred.LocalJobRunner:
14/02/08 16:36:21 INFO mapred.Task: Task:attempt_local2110196638_0001_r_000000_0 is done. And is in the process of commiting
14/02/08 16:36:21 INFO mapred.LocalJobRunner:
14/02/08 16:36:21 INFO mapred.Task: Task attempt_local2110196638_0001_r_000000_0 is allowed to commit now
14/02/08 16:36:21 INFO output.FileOutputCommitter: Saved output of task 'attempt_local2110196638_0001_r_000000_0' to /user/cloudera/output
14/02/08 16:36:21 INFO mapred.LocalJobRunner: reduce > reduce
14/02/08 16:36:21 INFO mapred.Task: Task 'attempt_local2110196638_0001_r_000000_0' done.
14/02/08 16:36:21 INFO mapred.JobClient: map 100% reduce 100%
14/02/08 16:36:21 INFO mapred.JobClient: Job complete: job_local2110196638_0001
14/02/08 16:36:21 INFO mapred.JobClient: Counters: 25
14/02/08 16:36:21 INFO mapred.JobClient: File System Counters
14/02/08 16:36:21 INFO mapred.JobClient: FILE: Number of bytes read=1541573
14/02/08 16:36:21 INFO mapred.JobClient: FILE: Number of bytes written=2668157
14/02/08 16:36:21 INFO mapred.JobClient: FILE: Number of read operations=0
14/02/08 16:36:21 INFO mapred.JobClient: FILE: Number of large read operations=0
14/02/08 16:36:21 INFO mapred.JobClient: FILE: Number of write operations=0
14/02/08 16:36:21 INFO mapred.JobClient: HDFS: Number of bytes read=127382708
14/02/08 16:36:21 INFO mapred.JobClient: HDFS: Number of bytes written=0
14/02/08 16:36:21 INFO mapred.JobClient: HDFS: Number of read operations=17
14/02/08 16:36:21 INFO mapred.JobClient: HDFS: Number of large read operations=0
14/02/08 16:36:21 INFO mapred.JobClient: HDFS: Number of write operations=4
14/02/08 16:36:21 INFO mapred.JobClient: Map-Reduce Framework
14/02/08 16:36:21 INFO mapred.JobClient: Map input records=419661
14/02/08 16:36:21 INFO mapred.JobClient: Map output records=202114
14/02/08 16:36:21 INFO mapred.JobClient: Map output bytes=4041067
14/02/08 16:36:21 INFO mapred.JobClient: Input split bytes=292
14/02/08 16:36:21 INFO mapred.JobClient: Combine input records=202114
14/02/08 16:36:21 INFO mapred.JobClient: Combine output records=95846
14/02/08 16:36:21 INFO mapred.JobClient: Reduce input groups=43
14/02/08 16:36:21 INFO mapred.JobClient: Reduce shuffle bytes=0
14/02/08 16:36:21 INFO mapred.JobClient: Reduce input records=95846
14/02/08 16:36:21 INFO mapred.JobClient: Reduce output records=0
14/02/08 16:36:21 INFO mapred.JobClient: Spilled Records=259510
14/02/08 16:36:21 INFO mapred.JobClient: CPU time spent (ms)=0
14/02/08 16:36:21 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
14/02/08 16:36:21 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
14/02/08 16:36:21 INFO mapred.JobClient: Total committed heap usage (bytes)=376516608
Job ended: Sat Feb 08 16:36:21 PST 2014
The job took 13 seconds.
我能看到的是,在地图工作完成之前,Reduce正在发生。
你认为这可能导致了这个问题吗?
如果是,是否有办法说减少等待地图完成?
如果否,上面的代码会出现什么问题?
答案 0 :(得分:0)
(编辑:之前删除了错误的解释)
您正在应用Reduce
作为合并器和缩减器。组合器位工作,但输出被反馈到同一个类,其中所有内容都没有2列,因此每行都被跳过。你不能将它作为合并器使用。
此代码还依赖于按时间按排序顺序查看事件,但没有关于它是如何构造的,似乎可以保证。
(这里有一些小的奇怪的东西,比如无意义的StringBuffer
(无论如何都应该是StringBuilder
),在异常后继续不正确,而不是导入{{1} },并解析long为double)