我的任务是编写一个程序来计算方法的收敛速度。我不得不使用牛顿方法来近似根。这部分代码还可以,效果很好,但我会把它包括在内。
x0 : start value
F: function
DF: jacobi matrix
tol : tolerance rate of the approximation. If it is reached the loop shall be stopped --> that`s why I calculate with count
maxit: maximum iterations
重要的是,我试图为任何n维度做这件事。
def konv(x0, F, FD, tol, maxit):
#set counter of the iterations to zero and define an array for the values of x in the iteration
count = 0
x = np.zeros([np.shape(x0)[0], maxit])
x[:,0] = x0
#fill the array with the values given by the formula x_k+1 = x_k - ((DF(x_k))^(-1)*F(x_k))
#((DF(x_k))^(-1)*F(x_k)) = s
for i in range(maxit):
count = 1+i
s = np.linalg.solve(DF(x[..., i]), F(x[..., i]))
x[..., i+1] = x[..., i] - s
if np.all((np.linalg.norm(x[..., i+1]-x[..., i]) < tol*np.linalg.norm(x[..., i]))):
break
#define an array which stores the errors
e = np.zeros(count)
for i in range(count):
e[i] = np.linalg.norm(x[..., i] - x[..., count])
#return the rate of convergence
return lambda e : np.log(e[2:]/e[1:-1]/np.log(e[1:-1])/e[:-2])
主要部分:
if __name__ == "__main__":
p = konv(x0, F, DF, tol, maxit)
print(p)
我得到的结果是:
[ 0.39384945 0.03214274] 6
<function konv.<locals>.<lambda> at 0x0000023312A82268>
这是什么意思?它不应该返回一个数字吗?为什么我的返回值中有字母?
答案 0 :(得分:1)
使用lambda函数返回函数而不是数字。
简单地回复:
return np.log(e[2:]/e[1:-1]/np.log(e[1:-1])/e[:-2])