我有一个正定矩阵A,我已经计算了cholesky分解:A = LDL ^ T. 对于某些向量x,我想计算S ^ { - 1} x,其中S是A的平方根。现在,我做
Eigen::SelfadjointEigenSolver<Eigen::MatrixXd> es(A);
Eigen::MatrixXd Si(es.operatorInverseSqrt());
return Si*get_x();
这是一种稳定的计算方法吗?我虽然计算逆是一般的坏事。有没有办法使用已执行的LDLT分解?我觉得这是可能的,因为那是LDLT::solve()
幕后实际发生的事情!
答案 0 :(得分:0)
这是解决对称矩阵A和一般右手边b(矢量或矩阵)问题的完整代码。我无法在网上找到任何我可以玩的东西(或者只是复制粘贴)所以我写了一个。
方法stable_cholesky_solver
使用使用旋转的稳定分解lldt()
完成解决平方根的工作。 main
使用较不稳定(但更快)的llt()
分解来验证它是否做了它应该做的任何事情,并提出了实现相同目标的方法。
请参阅documentation的前几行以了解我的L,P,D符号。
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
Matrix<double, Dynamic, Dynamic> stable_cholesky_solver(
LDLT<MatrixXd> ldltDecomp,
Matrix<double, Dynamic, Dynamic> A,
bool transpose = false )
{
// Preparations:
// For some reason if I sub it below I get error
Matrix<double, Dynamic, Dynamic> L = ldltDecomp.matrixL();
// Number of rows is all that matters, regardless if rhs is a
// matrix or a vector
int k = A.rows();
// Manually inverting D. This procedure has the advantage that
// D^{-1/2} can also be applied to matrices.
VectorXd diag;
diag.resize(k);
for( int i = 0 ; i < k ; ++i )
diag(i) = 1. / sqrt( ldltDecomp.vectorD()(i) ) ; // Manual inversion
DiagonalMatrix<double, Dynamic > sqrtInvD = diag.asDiagonal();
// The permutation "matrix" P
Transpositions<Dynamic> P = ldltDecomp.transpositionsP();
// Holds all the computations
Matrix<double, Dynamic, Dynamic> x;
// Now the actual computation
if( !transpose ) {
// x = PA
x = P * A;
// x = L^{-1}PA
x = L.triangularView<Lower>().solve<OnTheLeft>(x);
// x = D^{-1/2}L^{-1}PA
x = sqrtInvD * x;
} else {
// x = D^{-1/2}A
x = sqrtInvD * A;
// x = L^{-t}D^{-1/2}A
x = L.triangularView<Lower>().transpose().solve<OnTheLeft>(x);
// x = P^tL^{-t}D^{-1/2}A
x = P.transpose() * x;
}
return x;
}
int main()
{
int k = 3; // Dimensionality
// Define, declare and enter the problem's data
MatrixXd A;
A.resize(k, k);
MatrixXd b;
b.resize(k, 2 );
A <<
13, 5, 7 ,
5 , 9, 3 ,
7 , 3, 11;
b <<
3, 3, 4,
1,-2, 9;
cout << "Here is the " << A.rows() << " by " << A.cols() << " matrix A:\n" << A << endl;
cout << "Here is the " << b.rows() << " by " << b.cols() << " matrix b:\n" << b << endl;
cout << "Let's solve Ax = b using different methods.\n" <<endl;
// Two placeholders that will be used throughout
MatrixXd L;
MatrixXd x;
// ldlt()
cout << "\n\nUsing the stable Cholesky decompostion ldlt()" << endl;
// The object that actually holds the entire decomposition
LDLT<MatrixXd> ldltDecomp = A.ldlt();
// Direct solution, using Eigen's routines
x = ldltDecomp.solve(b);
cout << "Direct x =\n" << x << endl;
cout << "Direct b =\n" << A*x << endl;
// Manual solution - implementing the process Eigen is taking, step
// by step (in the function defined above).
x = stable_cholesky_solver( ldltDecomp, b );
x = stable_cholesky_solver( ldltDecomp, x, true );
cout << "Manual x =\n" << x << endl;
cout << "Manual b =\n" << A*x << endl;
// llt()
cout << "\n\nUsing the less stable, but faster Cholesky decomposition " << "without pivoting llt()" << endl;
// Here A.llt() is the object that actually holds the decomposition
// (like ldltDecomp before) but we only need the matrix L.
L = A.llt().matrixL();
x = L.triangularView<Lower>().solve<OnTheLeft>(b);
x = L.triangularView<Lower>().transpose().solve<OnTheLeft>(x);
cout << "Manual x =\n" << x << endl;
cout << "Manual b =\n" << A*x << endl;
}