Scipy leastsq:将方形网格拟合到2D中的实验点

时间:2014-02-06 01:36:36

标签: python numpy scipy least-squares data-fitting

我正在尝试使用Scipy leastsq找到2-D中一组测量点坐标的“方形”网格的最佳拟合(实验点大致在正方形网格上)。 / p>

网格的参数是音高(x和y相等),中心位置(center_xcenter_y)和rotation(度数)。

我定义了一个误差函数,计算每对点的欧氏距离(实验 vs 理想网格)并取平均值。我想尽量减少这个功能leastsq,但我收到了错误。

以下是函数定义:

import numpy as np
from scipy.optimize import leastsq

def get_spot_grid(shape, pitch, center_x, center_y, rotation=0):
    x_spots, y_spots = np.meshgrid(
             (np.arange(shape[1]) - (shape[1]-1)/2.)*pitch, 
             (np.arange(shape[0]) - (shape[0]-1)/2.)*pitch)
    theta = rotation/180.*np.pi
    x_spots = x_spots*np.cos(theta) - y_spots*np.sin(theta) + center_x
    y_spads = x_spots*np.sin(theta) + y_spots*np.cos(theta) + center_y
    return x_spots, y_spots

def get_mean_distance(x1, y1, x2, y2):
    return np.sqrt((x1 - x2)**2 + (y1 - y2)**2).mean()

def err_func(params, xe, ye):
    pitch, center_x, center_y, rotation = params
    x_grid, y_grid = get_spot_grid(xe.shape, pitch, center_x, center_y, rotation)
    return get_mean_distance(x_grid, y_grid, xe, ye)

这是实验坐标:

xe = np.array([ -23.31,  -4.01,  15.44,  34.71, -23.39,  -4.10,  15.28,  34.60, -23.75,  -4.38,  15.07,  34.34, -23.91,  -4.53,  14.82,  34.15]).reshape(4, 4)
ye = np.array([-16.00, -15.81, -15.72, -15.49,   3.29,   3.51,   3.90,   4.02,  22.75,  22.93,  23.18,  23.43,  42.19,  42.35,  42.69,  42.87]).reshape(4, 4)

我尝试以这种方式使用leastsq

leastsq(err_func, x0=(19, 12, 5, 0), args=(xe, ye))

但是我收到以下错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-19-ee91cf6ce7d6> in <module>()
----> 1 leastsq(err_func, x0=(19, 12, 5, 0), args=(xe, ye))

C:\Anaconda\lib\site-packages\scipy\optimize\minpack.pyc in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
    369     m = shape[0]
    370     if n > m:
--> 371         raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m))
    372     if epsfcn is None:
    373         epsfcn = finfo(dtype).eps

TypeError: Improper input: N=4 must not exceed M=1

我无法弄清楚这里的问题是什么:(

3 个答案:

答案 0 :(得分:1)

由于leastsq函数假定err_function返回一个残差数组docs,并且以这种方式编写err_function有点困难,为什么不使用另一个scipy的函数 - minimize。然后你添加你的指标 - 你已经拥有的错误功能,它的工作原理。但是,我认为get_spot_grid函数中还有一个拼写错误(y_spots vs y_spads)。完整的代码:

import numpy as np
from scipy.optimize import leastsq, minimize

def get_spot_grid(shape, pitch, center_x, center_y, rotation=0):
    x_spots, y_spots = np.meshgrid(
             (np.arange(shape[1]) - (shape[1]-1)/2.)*pitch, 
             (np.arange(shape[0]) - (shape[0]-1)/2.)*pitch)
    theta = rotation/180.*np.pi
    x_spots = x_spots*np.cos(theta) - y_spots*np.sin(theta) + center_x
    y_spots = x_spots*np.sin(theta) + y_spots*np.cos(theta) + center_y
    return x_spots, y_spots


def get_mean_distance(x1, y1, x2, y2):
    return np.sqrt((x1 - x2)**2 + (y1 - y2)**2).mean()


def err_func(params, xe, ye):
    pitch, center_x, center_y, rotation = params
    x_grid, y_grid = get_spot_grid(xe.shape, pitch, center_x, center_y, rotation)
    return get_mean_distance(x_grid, y_grid, xe, ye)

xe = np.array([-23.31,  -4.01,  15.44,  34.71, -23.39,  -4.10,  15.28,  34.60, -23.75,  -4.38,  15.07,  34.34, -23.91,  -4.53,  14.82,  34.15]).reshape(4, 4)
ye = np.array([-16.00, -15.81, -15.72, -15.49,   3.29,   3.51,   3.90,   4.02,  22.75,  22.93,  23.18,  23.43,  42.19,  42.35,  42.69,  42.87]).reshape(4, 4)

# leastsq(err_func, x0=(19, 12, 5, 0), args=(xe, ye))
minimize(err_func, x0=(19, 12, 5, 0), args=(xe, ye))

答案 1 :(得分:0)

传递给leastsq的函数(例如err_func)应返回与xeye形状相同的值数组 - 也就是说xe的每个值都有一个残差和ye

def err_func(params, xe, ye):
    pitch, center_x, center_y, rotation = params
    x_grid, y_grid = get_spot_grid(xe.shape, pitch, center_x, center_y, rotation)
    return get_mean_distance(x_grid, y_grid, xe, ye)

mean()中对get_mean_distance的调用将返回值减少为单个标量。请注意,传递给xe的{​​{1}}和ye是数组而不是标量。

错误消息

err_func

表示参数4的数量不应超过TypeError: Improper input: N=4 must not exceed M=1 返回的残差数量,1。


通过将对err_func的调用更改为mean()(即取每列的平均值)或mean(axis=0)(即取每行的平均值),可以使程序可运行:

mean(axis=1)

我不太了解你的代码,知道它应该是什么。但我们的想法是,def get_mean_distance(x1, y1, x2, y2): return np.sqrt((x1 - x2)**2 + (y1 - y2)**2).mean(axis=1) xe中的每个“点”都应该有一个值。

答案 2 :(得分:0)

您的问题出在以下事实:lesssqs使用“列”作为误差函数,而不是2D矩阵阵列。您可以使用np.ravel()将所需的任何“图像”转换为平面一维数组,然后轻松进行拟合。

例如用于拟合2D高斯:

#define gaussian function, p is parameters [wx,wy,x,y,I,offset]
def specGaussian2D(Xv,Yv,width_x, width_y, CenterX, CenterY, height=1.0, offset=0.0):
    X= (Xv - CenterX)/width_x
    Y= (Yv - CenterY)/width_y
    eX= np.exp(-0.5*(X**2))
    eY= np.exp(-0.5*(Y**2))
    eY=eY.reshape(len(eY),1)
    return offset + height*eY*eX

#define gaussian fit, use gaussian function specGaussian2D, p0 is initial parameters [wx,wy,x,y,I,offset]
def Gaussfit2D(Image,p0):
    sh=Image.shape
    Xv=np.arange(0,sh[1])
    Yv=np.arange(0,sh[0])
    errorfunction = lambda p: np.ravel(specGaussian2D(Xv,Yv,*p) -Image)
    p = optimize.leastsq(errorfunction, p0)
    return p

因此,在您的情况下,我将删除均值(否则您将拟合数据的“直方图”)并在err_func中使用np.ravel。