用R中的颜色和频率绘制混淆矩阵

时间:2014-02-05 22:30:36

标签: r plot confusion-matrix

我想绘制一个混淆矩阵,但是,我不想只使用热图,因为我认为它们的数值分辨率很差。相反,我还想在正方形的中间绘制频率。例如,我喜欢这个的输出:

library(mlearning);
data("Glass", package = "mlbench")
Glass$Type <- as.factor(paste("Glass", Glass$Type))

summary(glassLvq <- mlLvq(Type ~ ., data = Glass));
(glassConf <- confusion(predict(glassLvq, Glass, type = "class"), Glass$Type))

plot(glassConf) # Image by default

然而,1。)我不明白“01,02等”是指每个轴。我们怎样才能摆脱这种局面?          2.)我希望'Predicted'作为'y'维度的标签,'Actual'作为'x'维度的标签          3.)我想用频率/概率替换绝对计数。

或者,是否有其他包可以执行此操作?

本质上,我希望在R:

http://www.mathworks.com/help/releases/R2013b/nnet/gs/gettingstarted_nprtool_07.gif

OR:

http://c431376.r76.cf2.rackcdn.com/8805/fnhum-05-00189-HTML/image_m/fnhum-05-00189-g009.jpg

2 个答案:

答案 0 :(得分:6)

mlearning包似乎非常灵活,可以绘制混淆矩阵。

从您的glassConf对象开始,您可能希望执行以下操作:

prior(glassConf) <- 100 
# The above rescales the confusion matrix such that columns sum to 100.
opar <- par(mar=c(5.1, 6.1, 2, 2))
x <- x.orig <- unclass(glassConf)
x <- log(x + 0.5) * 2.33
x[x < 0] <- NA
x[x > 10] <- 10
diag(x) <- -diag(x)
image(1:ncol(x), 1:ncol(x),
      -(x[, nrow(x):1]), xlab='Actual', ylab='',
      col=colorRampPalette(c(hsv(h = 0, s = 0.9, v = 0.9, alpha = 1), 
                             hsv(h = 0, s = 0, v = 0.9, alpha = 1), 
                             hsv(h = 2/6, s = 0.9, v = 0.9, alpha = 1)))(41), 
      xaxt='n', yaxt='n', zlim=c(-10, 10))
axis(1, at=1:ncol(x), labels=colnames(x), cex.axis=0.8)
axis(2, at=ncol(x):1, labels=colnames(x), las=1, cex.axis=0.8)
title(ylab='Predicted', line=4.5)
abline(h = 0:ncol(x) + 0.5, col = 'gray')
abline(v = 0:ncol(x) + 0.5, col = 'gray')
text(1:6, rep(6:1, each=6), 
     labels = sub('^0$', '', round(c(x.orig), 0)))
box(lwd=2)
par(opar) # reset par

以上代码使用confusionImage调用的plot.confusion函数的各个部分。

Confusion matrix

答案 1 :(得分:0)

这是我根据jbaums优秀答案开发的用于绘制混淆矩阵的函数。
相似,但是看起来更好(IMO),并且不会转置您输入的混淆矩阵,这可能会有所帮助。

### Function for plotting confusion matrices
confMatPlot = function(confMat, titleMy, shouldPlot = T) {
  #' Function for plotting confusion matrice
  #' 
  #' @param confMat: confusion matrix with counts, ie integers. 
  #' Fractions won't work
  #' @param titleMy: String containing plot title
  #' @return Nothing: It only plots

  ## Prepare data
  x.orig = confMat; rm(confMat)  # Lazy conversion to function internal variable name
  n = nrow(x.orig)  # conf mat is square by definition, so nrow(x) == ncol(x)
  opar <- par(mar = c(5.1, 8, 3, 2))
  x <- x.orig
  x <- log(x + 0.5)  # x<1 -> x<0 ,  x>=1 -> x>0
  x[x < 0] <- NA
  diag(x) <- -diag(x)  # change sign to give diagonal different color
  ## Plot confusion matrix
  image(1:n, 1:n,  # grid of coloured boxes
        # matrix giving color values for the boxes
        # t() and [,ncol(x):1] since image puts [1,1] in bottom left by default
        -t(x)[, n:1],  
        # ylab added later to avoid overlap with tick labels
        xlab = 'Actual', ylab = '',
        col = colorRampPalette(c("darkorange3", "white", "steelblue"), 
                               bias = 1.65)(100),
        xaxt = 'n', yaxt = 'n'
        )
  # Plot counts
  text(rep(1:n, each = n), rep(n:1, times = n), 
       labels = sub('^0$', '', round(c(x.orig), 0)))
  # Axis ticks but no lables
  axis(1, at = 1:n, labels = rep("", n), cex.axis = 0.8)
  axis(2, at = n:1, labels = rep("", n), cex.axis = 0.8)
  # Tilted axis lables
  text(cex = 0.8, x = (1:n), y = -0.1, colnames(x), xpd = T, srt = 30, adj = 1)
  text(cex = 0.8, y = (n:1), x = +0.1, colnames(x), xpd = T, srt = 30, adj = 1)
  title(main = titleMy)
  title(ylab = 'Predicted', line = 6)
  # Grid and box
  abline(h = 0:n + 0.5, col = 'gray')
  abline(v = 0:n + 0.5, col = 'gray')
  box(lwd = 1, col = 'gray')
  par(opar)
}

输出示例:

enter image description here