我有两个混淆矩阵,计算值为真阳性(tp),假阳性(fp),真阴性(tn)和假阴性(fn),对应两种不同的方法。我想把它们表示为
我相信facet grid或facet wrap可以做到这一点,但我觉得很难开始。 这是与method1和method2
对应的两个混淆矩阵的数据dframe<-structure(list(label = structure(c(4L, 2L, 1L, 3L, 4L, 2L, 1L,
3L), .Label = c("fn", "fp", "tn", "tp"), class = "factor"), value = c(9,
0, 3, 1716, 6, 3, 6, 1713), method = structure(c(1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L), .Label = c("method1", "method2"), class = "factor")), .Names = c("label",
"value", "method"), row.names = c(NA, -8L), class = "data.frame")
答案 0 :(得分:13)
这可能是一个好的开始
TClass <- factor(c(0, 0, 1, 1))
PClass <- factor(c(0, 1, 0, 1))
Y <- c(2816, 248, 34, 235)
df <- data.frame(TClass, PClass, Y)
library(ggplot2)
ggplot(data = df, mapping = aes(x = TClass, y = PClass)) +
geom_tile(aes(fill = Y), colour = "white") +
geom_text(aes(label = sprintf("%1.0f", Y)), vjust = 1) +
scale_fill_gradient(low = "blue", high = "red") +
theme_bw() + theme(legend.position = "none")
<强>被修改强>
{{1}}
答案 1 :(得分:4)
基于MYaseen208答案的稍微模块化的解决方案。对于大型数据集/多项分类可能更有效:
confusion_matrix <- as.data.frame(table(predicted_class, actual_class))
ggplot(data = confusion_matrix
mapping = aes(x = predicted_class,
y = Var2)) +
geom_tile(aes(fill = Freq)) +
geom_text(aes(label = sprintf("%1.0f", Freq)), vjust = 1) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log") # if your results aren't quite as clear as the above example
答案 2 :(得分:0)
一个老问题,但是我写了这个函数,我认为这个函数更漂亮。产生不同的调色板(或任何您想要的颜色,但默认值为不同):
prettyConfused<-function(Actual,Predict,colors=c("white","red4","dodgerblue3"),text.scl=5){
actual = as.data.frame(table(Actual))
names(actual) = c("Actual","ActualFreq")
#build confusion matrix
confusion = as.data.frame(table(Actual, Predict))
names(confusion) = c("Actual","Predicted","Freq")
#calculate percentage of test cases based on actual frequency
confusion = merge(confusion, actual, by=c('Actual','Actual'))
confusion$Percent = confusion$Freq/confusion$ActualFreq*100
confusion$ColorScale<-confusion$Percent*-1
confusion[which(confusion$Actual==confusion$Predicted),]$ColorScale<-confusion[which(confusion$Actual==confusion$Predicted),]$ColorScale*-1
confusion$Label<-paste(round(confusion$Percent,0),"%, n=",confusion$Freq,sep="")
tile <- ggplot() +
geom_tile(aes(x=Actual, y=Predicted,fill=ColorScale),data=confusion, color="black",size=0.1) +
labs(x="Actual",y="Predicted")
tile = tile +
geom_text(aes(x=Actual,y=Predicted, label=Label),data=confusion, size=text.scl, colour="black") +
scale_fill_gradient2(low=colors[2],high=colors[3],mid=colors[1],midpoint = 0,guide='none')
}
答案 3 :(得分:0)
这是另一个基于ggplot2的选项;首先是数据(来自插入符号):
library(caret)
# data/code from "2 class example" example courtesy of ?caret::confusionMatrix
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
confusionMatrix(pred, truth)
并构建图(在设置“表格”时根据需要在下面替换您自己的矩阵):
library(ggplot2)
library(dplyr)
table <- data.frame(confusionMatrix(pred, truth)$table)
plotTable <- table %>%
mutate(goodbad = ifelse(table$Prediction == table$Reference, "good", "bad")) %>%
group_by(Reference) %>%
mutate(prop = Freq/sum(Freq))
# fill alpha relative to sensitivity/specificity by proportional outcomes within reference groups (see dplyr code above as well as original confusion matrix for comparison)
ggplot(data = plotTable, mapping = aes(x = Reference, y = Prediction, fill = goodbad, alpha = prop)) +
geom_tile() +
geom_text(aes(label = Freq), vjust = .5, fontface = "bold", alpha = 1) +
scale_fill_manual(values = c(good = "green", bad = "red")) +
theme_bw() +
xlim(rev(levels(table$Reference)))
# note: for simple alpha shading by frequency across the table at large, simply use "alpha = Freq" in place of "alpha = prop" when setting up the ggplot call above, e.g.,
ggplot(data = plotTable, mapping = aes(x = Reference, y = Prediction, fill = goodbad, alpha = Freq)) +
geom_tile() +
geom_text(aes(label = Freq), vjust = .5, fontface = "bold", alpha = 1) +
scale_fill_manual(values = c(good = "green", bad = "red")) +
theme_bw() +
xlim(rev(levels(table$Reference)))
答案 4 :(得分:0)
这是一个非常老的问题,但对于使用ggplot2的解决方案似乎仍然存在一个非常直接的解决方案,但尚未提及。
希望对某人有帮助:
cm <- confusionMatrix(factor(y.pred), factor(y.test), dnn = c("Prediction", "Reference"))
ggplot(as.data.frame(cm$table), aes(Prediction,sort(Reference,decreasing = T), fill= Freq)) +
geom_tile() + geom_text(aes(label=Freq)) +
scale_fill_gradient(low="white", high="#009194") +
labs(x = "Reference",y = "Prediction") +
scale_x_discrete(labels=c("Class_1","Class_2","Class_3","Class_4")) +
scale_y_discrete(labels=c("Class_4","Class_3","Class_2","Class_1"))
答案 5 :(得分:0)
这里是一个使用 cvms
包的 reprex,即 ggplot2 的 Wrapper 函数来制作混淆矩阵。
library(cvms)
library(broom)
library(tibble)
library(ggimage)
#> Loading required package: ggplot2
library(rsvg)
set.seed(1)
d_multi <- tibble("target" = floor(runif(100) * 3),
"prediction" = floor(runif(100) * 3))
conf_mat <- confusion_matrix(targets = d_multi$target,
predictions = d_multi$prediction)
# plot_confusion_matrix(conf_mat$`Confusion Matrix`[[1]], add_sums = TRUE)
plot_confusion_matrix(
conf_mat$`Confusion Matrix`[[1]],
add_sums = TRUE,
sums_settings = sum_tile_settings(
palette = "Oranges",
label = "Total",
tc_tile_border_color = "black"
)
)
由 reprex package (v0.3.0) 于 2021 年 1 月 19 日创建