如何裁剪到OpenCV中最大的内部边界框?

时间:2014-01-28 15:54:41

标签: python opencv

我在黑色背景上有一些图像,图像没有方形边缘(见下图右下角)。我想将它们裁剪成最大的矩形图像(红色边框)。我知道我可能会失去原始图像。是否可以在OpenCV中使用Python执行此操作。我知道有一些功能可以裁剪到轮廓的边界框,但这仍然会让我在地方留下黑色背景。

enter image description here

3 个答案:

答案 0 :(得分:17)

好吧,我已经玩了一个想法并测试了它(它是c ++,但你可能能够将它转换为python):

  1. 假设:背景为黑色,内部没有黑色边界部分
  2. 您可以使用findContours
  3. 找到外部轮廓
  4. 使用该轮廓的最小/最大x / y点位置,直到由这些点构建的矩形不包含位于轮廓之外的点
  5. 我无法保证此方法始终找到“最佳”内部框,但我使用启发式方法来选择矩形是在顶部/底部/左侧/右侧缩小。

    代码当然也可以优化;)

    使用它作为testimage,我得到了结果(非红色区域是找到的内部矩形):

    enter image description here

    enter image description here

    认为右上方有一个不应该包含在矩形中的像素,也许是因为提取/绘制轮廓错误了?!

    和这里的代码:

    cv::Mat input = cv::imread("LenaWithBG.png");
    
    cv::Mat gray;
    cv::cvtColor(input,gray,CV_BGR2GRAY);
    
    cv::imshow("gray", gray);
    
    // extract all the black background (and some interior parts maybe)
    cv::Mat mask = gray>0;
    cv::imshow("mask", mask);
    
    // now extract the outer contour
    std::vector<std::vector<cv::Point> > contours;
    std::vector<cv::Vec4i> hierarchy;
    
    cv::findContours(mask,contours,hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE, cv::Point(0,0));
    
    std::cout << "found contours: " << contours.size() << std::endl;
    
    
    cv::Mat contourImage = cv::Mat::zeros( input.size(), CV_8UC3 );;
    
    //find contour with max elements
    // remark: in theory there should be only one single outer contour surrounded by black regions!!
    
    unsigned int maxSize = 0;
    unsigned int id = 0;
    for(unsigned int i=0; i<contours.size(); ++i)
    {
        if(contours.at(i).size() > maxSize)
        {
            maxSize = contours.at(i).size();
            id = i;
        }
    }
    
    std::cout << "chosen id: " << id << std::endl;
    std::cout << "max size: " << maxSize << std::endl;
    
    /// Draw filled contour to obtain a mask with interior parts
    cv::Mat contourMask = cv::Mat::zeros( input.size(), CV_8UC1 );
    cv::drawContours( contourMask, contours, id, cv::Scalar(255), -1, 8, hierarchy, 0, cv::Point() );
    cv::imshow("contour mask", contourMask);
    
    // sort contour in x/y directions to easily find min/max and next
    std::vector<cv::Point> cSortedX = contours.at(id);
    std::sort(cSortedX.begin(), cSortedX.end(), sortX);
    
    std::vector<cv::Point> cSortedY = contours.at(id);
    std::sort(cSortedY.begin(), cSortedY.end(), sortY);
    
    
    unsigned int minXId = 0;
    unsigned int maxXId = cSortedX.size()-1;
    
    unsigned int minYId = 0;
    unsigned int maxYId = cSortedY.size()-1;
    
    cv::Rect interiorBB;
    
    while( (minXId<maxXId)&&(minYId<maxYId) )
    {
        cv::Point min(cSortedX[minXId].x, cSortedY[minYId].y);
        cv::Point max(cSortedX[maxXId].x, cSortedY[maxYId].y);
    
        interiorBB = cv::Rect(min.x,min.y, max.x-min.x, max.y-min.y);
    
    // out-codes: if one of them is set, the rectangle size has to be reduced at that border
        int ocTop = 0;
        int ocBottom = 0;
        int ocLeft = 0;
        int ocRight = 0;
    
        bool finished = checkInteriorExterior(contourMask, interiorBB, ocTop, ocBottom,ocLeft, ocRight);
        if(finished)
        {
            break;
        }
    
    // reduce rectangle at border if necessary
        if(ocLeft)++minXId;
        if(ocRight) --maxXId;
    
        if(ocTop) ++minYId;
        if(ocBottom)--maxYId;
    
    
    }
    
    std::cout <<  "done! : " << interiorBB << std::endl;
    
    cv::Mat mask2 = cv::Mat::zeros(input.rows, input.cols, CV_8UC1);
    cv::rectangle(mask2,interiorBB, cv::Scalar(255),-1);
    
    cv::Mat maskedImage;
    input.copyTo(maskedImage);
    for(unsigned int y=0; y<maskedImage.rows; ++y)
        for(unsigned int x=0; x<maskedImage.cols; ++x)
        {
            maskedImage.at<cv::Vec3b>(y,x)[2] = 255;
        }
    input.copyTo(maskedImage,mask2);
    
    cv::imshow("masked image", maskedImage);
    cv::imwrite("interiorBoundingBoxResult.png", maskedImage);
    

    具有缩小功能:

    bool checkInteriorExterior(const cv::Mat&mask, const cv::Rect&interiorBB, int&top, int&bottom, int&left, int&right)
    {
    // return true if the rectangle is fine as it is!
    bool returnVal = true;
    
    cv::Mat sub = mask(interiorBB);
    
    unsigned int x=0;
    unsigned int y=0;
    
    // count how many exterior pixels are at the
    unsigned int cTop=0; // top row
    unsigned int cBottom=0; // bottom row
    unsigned int cLeft=0; // left column
    unsigned int cRight=0; // right column
    // and choose that side for reduction where mose exterior pixels occured (that's the heuristic)
    
    for(y=0, x=0 ; x<sub.cols; ++x)
    {
        // if there is an exterior part in the interior we have to move the top side of the rect a bit to the bottom
        if(sub.at<unsigned char>(y,x) == 0)
        {
            returnVal = false;
            ++cTop;
        }
    }
    
    for(y=sub.rows-1, x=0; x<sub.cols; ++x)
    {
        // if there is an exterior part in the interior we have to move the bottom side of the rect a bit to the top
        if(sub.at<unsigned char>(y,x) == 0)
        {
            returnVal = false;
            ++cBottom;
        }
    }
    
    for(y=0, x=0 ; y<sub.rows; ++y)
    {
        // if there is an exterior part in the interior
        if(sub.at<unsigned char>(y,x) == 0)
        {
            returnVal = false;
            ++cLeft;
        }
    }
    
    for(x=sub.cols-1, y=0; y<sub.rows; ++y)
    {
        // if there is an exterior part in the interior
        if(sub.at<unsigned char>(y,x) == 0)
        {
            returnVal = false;
            ++cRight;
        }
    }
    
    // that part is ugly and maybe not correct, didn't check whether all possible combinations are handled. Check that one please. The idea is to set `top = 1` iff it's better to reduce the rect at the top than anywhere else.
    if(cTop > cBottom)
    {
        if(cTop > cLeft)
            if(cTop > cRight)
                top = 1;
    }
    else
        if(cBottom > cLeft)
            if(cBottom > cRight)
                bottom = 1;
    
    if(cLeft >= cRight)
    {
        if(cLeft >= cBottom)
            if(cLeft >= cTop)
                left = 1;
    }
    else
        if(cRight >= cTop)
            if(cRight >= cBottom)
                right = 1;
    
    
    
    return returnVal;
    }
    
    bool sortX(cv::Point a, cv::Point b)
    {
        bool ret = false;
        if(a.x == a.x)
            if(b.x==b.x)
                ret = a.x < b.x;
    
        return ret;
    }
    
    bool sortY(cv::Point a, cv::Point b)
    {
        bool ret = false;
        if(a.y == a.y)
            if(b.y == b.y)
                ret = a.y < b.y;
    
    
        return ret;
    }
    

答案 1 :(得分:1)

受@micka答案启发的解决方案,在python中。

这不是一个聪明的解决方案,可以对其进行优化,但是就我而言,它(缓慢)起作用。

我修改了您的图像以添加一个正方形,例如您的示例:请参见there

最后,这段代码将picture

中的白色矩形裁剪掉

希望您会发现它有帮助!

import cv2

# Import your picture
input_picture = cv2.imread("LenaWithBG.png")

# Color it in gray
gray = cv2.cvtColor(input_picture, cv2.COLOR_BGR2GRAY)

# Create our mask by selecting the non-zero values of the picture
ret, mask = cv2.threshold(gray,0,255,cv2.THRESH_BINARY)

# Select the contour
mask , cont, _ = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# if your mask is incurved or if you want better results, 
# you may want to use cv2.CHAIN_APPROX_NONE instead of cv2.CHAIN_APPROX_SIMPLE, 
# but the rectangle search will be longer

cv2.drawContours(gray, cont, -1, (255,0,0), 1)
cv2.imshow("Your picture with contour", gray)
cv2.waitKey(0)

# Get all the points of the contour
contour = cont[0].reshape(len(cont[0]),2)

# we assume a rectangle with at least two points on the contour gives a 'good enough' result
# get all possible rectangles based on this hypothesis
rect = []

for i in range(len(contour)):
    x1, y1 = contour[i]
    for j in range(len(contour)):
        x2, y2 = contour[j]
        area = abs(y2-y1)*abs(x2-x1)
        rect.append(((x1,y1), (x2,y2), area))

# the first rect of all_rect has the biggest area, so it's the best solution if he fits in the picture
all_rect = sorted(rect, key = lambda x : x[2], reverse = True)

# we take the largest rectangle we've got, based on the value of the rectangle area
# only if the border of the rectangle is not in the black part

# if the list is not empty
if all_rect:

    best_rect_found = False
    index_rect = 0
    nb_rect = len(all_rect)

    # we check if the rectangle is  a good solution
    while not best_rect_found and index_rect < nb_rect:

        rect = all_rect[index_rect]
        (x1, y1) = rect[0]
        (x2, y2) = rect[1]

        valid_rect = True

        # we search a black area in the perimeter of the rectangle (vertical borders)
        x = min(x1, x2)
        while x <max(x1,x2)+1 and valid_rect:
            if mask[y1,x] == 0 or mask[y2,x] == 0:
                # if we find a black pixel, that means a part of the rectangle is black
                # so we don't keep this rectangle
                valid_rect = False
            x+=1

        y = min(y1, y2)
        while y <max(y1,y2)+1 and valid_rect:
            if mask[y,x1] == 0 or mask[y,x2] == 0:
                valid_rect = False
            y+=1

        if valid_rect:
            best_rect_found = True

        index_rect+=1

    if best_rect_found:

        cv2.rectangle(gray, (x1,y1), (x2,y2), (255,0,0), 1)
        cv2.imshow("Is that rectangle ok?",gray)
        cv2.waitKey(0)

        # Finally, we crop the picture and store it
        result = input_picture[min(y1, y2):max(y1, y2), min(x1,x2):max(x1,x2)]

        cv2.imwrite("Lena_cropped.png",result)
    else:
        print("No rectangle fitting into the area")

else:
    print("No rectangle found")

如果蒙版弯曲,或者只是想获得更好的效果,则可能要使用cv2.CHAIN_APPROX_NONE而不是cv2.CHAIN_APPROX_SIMPLE,但是矩形搜索会花费更多时间(因为在最佳情况下,这是二次解法)。

答案 2 :(得分:0)

在ImageMagick 6.9.10-30(或7.0.8.30)或更高版本中,可以将-trim函数与新定义一起使用。

输入: enter image description here

convert image.png -fuzz 5% -define trim:percent-background=0% -trim +repage result.png


enter image description here

或者对于下面显示的图像:

输入:

enter image description here

convert image2.png -bordercolor black -border 1 -define trim:percent-background=0% -trim +repage result2.png


enter image description here