如何使用边界框裁剪图像

时间:2017-07-20 09:42:06

标签: javascript css crop amazon-rekognition

如何使用aws rekognition indexFaces api返回的边界框渲染到浏览器时裁剪图像?下面是边界框示例

<controls:DropShadowPanel x:Name="dspShadow"
                          BlurRadius="10"
                          ShadowOpacity="0.8"
                          OffsetX="0"
                          OffsetY="0"
                          Color="Black">
    <Border x:Name="borderMain" Background="Red" CornerRadius="10"/>
</controls:DropShadowPanel>

1 个答案:

答案 0 :(得分:0)

我也遇到过同样的问题。您必须对BoundingBox值执行一些计算。请注意在响应的 OrientationCorrection 字段中返回的估计方向。这是这里的关键值。您必须从这些令人困惑的值中找到顶部左侧。这是提示:

如果OrientationCorrection = ROTATE_0

Left = image.width*BoundingBox.Left
Top = image.height*BoundingBox.To

如果OrientationCorrection = ROTATE_90

Left = image.height * (1 - (BoundingBox.Top + .BoundingBox.Height))
Top = image.width * BoundingBox.Left

如果OrientationCorrection = ROTATE_180

Left = image.width - (image.width*(BoundingBox.Left + BoundingBox.Width))
Top = image.height * (1 - (BoundingBox.Top + BoundingBox.Height))

如果OrientationCorrection = ROTATE_270

Left = image.height * BoundingBox.top
Top = image.width * (1 - BoundingBox.Left - BoundingBox.Width)

这是我使用的python示例代码。

import boto3
import io
from PIL import Image

# Calculate positions from from estimated rotation 
def ShowBoundingBoxPositions(imageHeight, imageWidth, box, rotation): 
    left = 0
    top = 0

    if rotation == 'ROTATE_0':
        left = imageWidth * box['Left']
        top = imageHeight * box['Top']

    if rotation == 'ROTATE_90':
        left = imageHeight * (1 - (box['Top'] + box['Height']))
        top = imageWidth * box['Left']

    if rotation == 'ROTATE_180':
        left = imageWidth - (imageWidth * (box['Left'] + box['Width']))
        top = imageHeight * (1 - (box['Top'] + box['Height']))

    if rotation == 'ROTATE_270':
        left = imageHeight * box['Top']
        top = imageWidth * (1- box['Left'] - box['Width'] )

    print('Left: ' + '{0:.0f}'.format(left))
    print('Top: ' + '{0:.0f}'.format(top))
    print('Face Width: ' + "{0:.0f}".format(imageWidth * box['Width']))
    print('Face Height: ' + "{0:.0f}".format(imageHeight * box['Height']))


if __name__ == "__main__":

    photo='input.png'
    client=boto3.client('rekognition')


    #Get image width and height
    image = Image.open(open(photo,'rb'))
    width, height = image.size

    print ('Image information: ')
    print (photo)
    print ('Image Height: ' + str(height)) 
    print('Image Width: ' + str(width))    


    # call detect faces and show face age and placement
    # if found, preserve exif info
    stream = io.BytesIO()
    if 'exif' in image.info:
        exif=image.info['exif']
        image.save(stream,format=image.format, exif=exif)
    else:
        image.save(stream, format=image.format)    
    image_binary = stream.getvalue()

    response = client.detect_faces(Image={'Bytes': image_binary}, Attributes=['ALL'])

    print('Detected faces for ' + photo)    
    for faceDetail in response['FaceDetails']:
        print ('Face:')
        if 'OrientationCorrection'  in response:
            print('Orientation: ' + response['OrientationCorrection'])
            ShowBoundingBoxPositions(height, width, faceDetail['BoundingBox'], response['OrientationCorrection'])

        else:
            print ('No estimated orientation. Check Exif data')

        print('The detected face is estimated to be between ' + str(faceDetail['AgeRange']['Low']) 
            + ' and ' + str(faceDetail['AgeRange']['High']) + ' years')
        print()

它将返回图像中脸部的顶部高度宽度。如果您使用python,则可以像这样通过PIL轻松裁剪图像。

from PIL import Image
image = Image.open(open("Main_Image", 'rb'))
area = (Left, Top, Left + Width, Top + Height)
face = image.crop(area)
face.show()

它将显示图像中的裁切的脸部。
快乐编码