未经过滤时,FeedDeliveryNutrients.NutrientID超过150,000行的dense_rank
比使用Nutrients.ID上的row_number
和使用已加入的行号加入Nutrients快3.5倍。过滤到特定鸡群时,加入row_number
的速度提高了9倍。
是否有任何优化技术可以在单个查询中充分利用两个世界?
未经过滤时最快(返回150,000行):
select
FeedDeliveries.FlockID,
FeedDeliveryID,
DeliveryLb,
Bin,
DeliveryDate,
FormulaID,
FeedEnergy,
Nutrient1, Nutrient2, Nutrient3, Nutrient4, Nutrient5, Nutrient6, Nutrient7, Nutrient8, Nutrient9, Nutrient10, Nutrient11, Nutrient12, Nutrient13, Nutrient14, Nutrient15
from (
select
FeedDeliveryID,
sum(case when dense_rank = 1 then Amount end) as Nutrient1,
sum(case when dense_rank = 2 then Amount end) as Nutrient2,
sum(case when dense_rank = 3 then Amount end) as Nutrient3,
sum(case when dense_rank = 4 then Amount end) as Nutrient4,
sum(case when dense_rank = 5 then Amount end) as Nutrient5,
sum(case when dense_rank = 6 then Amount end) as Nutrient6,
sum(case when dense_rank = 7 then Amount end) as Nutrient7,
sum(case when dense_rank = 8 then Amount end) as Nutrient8,
sum(case when dense_rank = 9 then Amount end) as Nutrient9,
sum(case when dense_rank = 10 then Amount end) as Nutrient10,
sum(case when dense_rank = 11 then Amount end) as Nutrient11,
sum(case when dense_rank = 12 then Amount end) as Nutrient12,
sum(case when dense_rank = 13 then Amount end) as Nutrient13,
sum(case when dense_rank = 14 then Amount end) as Nutrient14,
sum(case when dense_rank = 15 then Amount end) as Nutrient15
from (select *, dense_rank() over (partition by FeedDeliveryID order by NutrientID) as dense_rank from dbo.FeedDeliveryNutrients) n
group by FeedDeliveryID
) pvt
join dbo.FeedDeliveries on FeedDeliveries.ID = FeedDeliveryID
使用dbo.FeedDeliveries.FlockID过滤时速度最快(返回约100行):
select
FeedDeliveries.FlockID,
FeedDeliveryID,
DeliveryLb,
Bin,
DeliveryDate,
FormulaID,
FeedEnergy,
Nutrient1, Nutrient2, Nutrient3, Nutrient4, Nutrient5, Nutrient6, Nutrient7, Nutrient8, Nutrient9, Nutrient10, Nutrient11, Nutrient12, Nutrient13, Nutrient14, Nutrient15
from (
select
FeedDeliveryID,
sum(case when n.row_number = 1 then Amount end) as Nutrient1,
sum(case when n.row_number = 2 then Amount end) as Nutrient2,
sum(case when n.row_number = 3 then Amount end) as Nutrient3,
sum(case when n.row_number = 4 then Amount end) as Nutrient4,
sum(case when n.row_number = 5 then Amount end) as Nutrient5,
sum(case when n.row_number = 6 then Amount end) as Nutrient6,
sum(case when n.row_number = 7 then Amount end) as Nutrient7,
sum(case when n.row_number = 8 then Amount end) as Nutrient8,
sum(case when n.row_number = 9 then Amount end) as Nutrient9,
sum(case when n.row_number = 10 then Amount end) as Nutrient10,
sum(case when n.row_number = 11 then Amount end) as Nutrient11,
sum(case when n.row_number = 12 then Amount end) as Nutrient12,
sum(case when n.row_number = 13 then Amount end) as Nutrient13,
sum(case when n.row_number = 14 then Amount end) as Nutrient14,
sum(case when n.row_number = 15 then Amount end) as Nutrient15
from dbo.FeedDeliveryNutrients
join (select *, row_number() over (order by ID) as row_number from dbo.Nutrients) n on n.ID = NutrientID
group by FeedDeliveryID
) pvt
join dbo.FeedDeliveries on FeedDeliveries.ID = FeedDeliveryID
答案 0 :(得分:0)
你已经得到了答案。针对最关键的情况进行优化。
从一开始我就可以对150.000行的场景使用优化,但你必须在实际的生产服务器上嗅一下。如果150.000只发生几次/周,并且100行生病了多次/分钟,这对你来说更重要。