加速R中的概率加权抽样

时间:2014-01-21 11:38:41

标签: r performance multicore sample weighted

如何在R中加快概率加权抽样。

# Let's assume we are considering following example:
w <- sample(1:4000,size=2e6, replace=T)   

# "w" will be integer, so we are going to convert it to numeric.
w <- as.numeric(w)

# Actually the sampling process have to be repeated many times.
M <- matrix(NA, 10, 2000)
system.time(
for (r in 1:10){
  ix <- sample(1:2e6,size=2000,prob=w/sum(w))
  M[r,] <- ix
})
# It's worth it to mention that without "prob=w/sum(w)" sampling is considerably faster.
# The main goal is to speed up sampling with probability weights!
system.time(ix <- sample(1:2e6,size=2000,prob=w/sum(w)))

加权采样需要9.84秒,正常采样0.01秒。 如果您对如何加速加权采样有任何了解,请随时回答。

1 个答案:

答案 0 :(得分:6)

速度问题仅限于无需更换的加权采样。这是您的代码,将与sample无关的部分移到循环之外。

normalized_weights <- w/sum(w)
#No weights
system.time(
for (r in 1:10){
  ix <- sample(2e6, size = 2000)
})
#Weighted, no replacement
system.time(
for (r in 1:10){
  ix <- sample(2e6, size = 2000, prob = normalized_weights)
})
#Weighted with replacement
system.time(
for (r in 1:10){
  ix <- sample(2e6, size = 2000, replace = TRUE, prob = normalized_weights)
})

最大的问题是,当您在没有替换的情况下进行加权采样时,每次选择一个值时,都需要重新计算权重。见?sample

  

如果'replace'为false,则按顺序应用这些概率,   那就是选择下一个项目的概率是成正比的   其余项目中的权重。

可能有比使用sample更快的解决方案(我不知道它的优化程度如何),但它比未加权/加权替换采样在计算上更加集中。