我有三位高斯的混合物,但无论我多大程度地调整先验,我都无法通过后面的方法摆脱先前的价值观。
k = 3
n1 = 1000
n2 = 1000
n3 = 1000
n = n1+n2+n3
mean1 = 17.3
mean2 = 42.0
mean3 = 31.0
precision = 0.1
sigma = np.sqrt(1 / precision)
print "Standard deviation: %s" % sigma
data1 = np.random.normal(mean1,sigma,n1)
data2 = np.random.normal(mean2,sigma,n2)
data3 = np.random.normal(mean3,sigma,n3)
data = np.concatenate([data1 , data2, data3])
hist(data, bins=200, color="k", histtype="stepfilled", alpha=0.8)
plt.title("Histogram of the dataset")
plt.ylim([0, None])
with pm.Model() as model:
dd = pm.Dirichlet('dd', a=np.array([float(n/k) for i in range(k)]), shape=k)
sd = pm.Uniform('precs', lower=1, upper=5, shape=k)
means = pm.Normal('means', [25, 30, 35], 0.01, shape=k)
category = pm.Categorical('category', p=dd, shape=n)
points = pm.Normal('obs',
means[category],
sd=sd[category],
observed=data)
tr = pm.sample(100000, step=pm.Metropolis())
pm.traceplot(tr, vars=['means', 'precs', 'dd'])
输出:
Standard deviation: 3.16227766017
[-----------------100%-----------------] 100000 of 100000 complete in 157.2 sec
正如您所看到的那样,没有收敛,并且手段不会从其初始值移动
答案 0 :(得分:4)
不幸的是,这是一个已知问题:我们正在研究https://github.com/pymc-devs/pymc/issues/452和https://github.com/pymc-devs/pymc/issues/443。
请注意,您可以使用其他步骤方法作为问题中的示例模型中的分类。但即使这样也不会导致收敛。