Pymc3中的分类混合模型

时间:2015-08-28 00:43:44

标签: pymc3

我是Pymc3的新手,我试图创建https://en.wikipedia.org/wiki/Mixture_model#Categorical_mixture_model中显示的分类混合模型。我很难挂钩' x'变量。我认为这是因为我必须使z变量确定性,但我在' x'的行中收到错误消息。分配:" ValueError:我们预计有3个输入,但得到2个。"。看起来p函数只接受2个输入,所以我被卡住了。我尝试了很多不同的东西,但还没有能够让它工作。

import numpy as np
from pymc3 import *
import theano.tensor as t

K = 3 #NUMBER OF TOPICS
V = 20 #NUMBER OF WORDS
N = 15 #NUMBER OF DOCUMENTS

#GENERAETE RANDOM CATEGORICAL MIXTURES
data = np.ones([N,V])

@theano.compile.ops.as_op(itypes=[t.lscalar, t.dscalar, t.dscalar],otypes=[t.dvector])
def p(z=z, phi=phi):
    return [phi[z[i,j]] for i in range(D) for j in range(W)]

model = Model()
with model:

    alpha = np.ones(V)
    beta = np.ones(K)

    theta = [Dirichlet('theta_%i' % i, alpha, shape=V) for i in range(K)]
    phi = Dirichlet('phi', beta, shape=K)

    z = [Categorical('z_%i' % i, p = phi, shape=V) for i in range(N)]
    x = [Categorical('x_%i_%i' % (i,j), p=p(z[i][j],phi), observed=data[i,j]) for i in range(N) for j in range(V)]
    #x = [Categorical('x_%i_%i' % (i,j), p=theta[z[i][j]], observed=data[i,j]) for i in range(N) for j in range(V)]

    print "Created model.  Now begin sampling"
    step = Slice()
    trace = sample(n, step)

    trace.get_values('phi')

1 个答案:

答案 0 :(得分:0)

对于初学者,在上面的例子中,z和phi没有允许它们用作默认值的值。我们也没有D和W的值。

至于参数的数量,你定义的函数有2但你上面的theano装饰器有3个。我建议

@theano.compile.ops.as_op(itypes=[t.lscalar, t.dvector],otypes=[t.dvector])
def p(z, phi):
    return [phi[z[i,j]] for i,j in zip(range(D),range(W))]