我想对常规多边形进行精确计算。为此,我编写了您在下面找到的代码。但表达式cos*cos
将无法编译。显然,我所使用的代数数字类型没有定义乘法。我想我将不得不尝试其他方法。目前似乎有两个候选人:
cos
转换为这样的leda::real
。 LEDA标头至少看起来有operator*
。 LEDA可供我免费使用,但仍然是封闭源。 CGAL 4.3的leda_real.h
看起来很奇怪:它指的是leda_real
而不是leda::real
,所以它可能是为过时版本的LEDA而写的。它显然包含了自己,看起来毫无意义。这些替代方案中哪一种最适合构建精确的CGAL内核,能够描述任意 n 的常规 n ?这些都有用吗?我还缺少另一种选择吗?
由于我的计算机上没有安装RS或LEDA,在开始构建之前我更喜欢受过教育的意见,甚至可能为我的Gentoo linux编写安装说明(“ebuilds”)。
#include <string>
#include <iostream>
#include <sstream>
#include <vector>
//define CGAL_USE_RS
#include <CGAL/Gmpz.h>
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Algebraic_kernel_rs_gmpz_d_1.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#define DBG(x) std::cerr << x << std::endl
typedef CGAL::Gmpz ZZ;
// typedef CGAL::Algebraic_kernel_rs_gmpz_d_1 AK;
typedef CGAL::Algebraic_kernel_d_1<ZZ> AK;
typedef AK::Polynomial_1 Polynomial;
typedef AK::Algebraic_real_1 AA;
typedef AK::Coefficient Coeff;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity;
typedef CGAL::Homogeneous<AK> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits;
typedef Kernel::Point_2 Point;
typedef Kernel::Segment_2 Segment;
typedef CGAL::Arrangement_2<Traits> Arrangement;
static unsigned run(unsigned short n) {
AK ak;
AK::Construct_algebraic_real_1 to_AA = ak.construct_algebraic_real_1_object();
AK::Solve_1 solve = ak.solve_1_object();
Polynomial x{CGAL::shift(Polynomial(1), 1)}, twox{2*x};
Polynomial a{1}, b{x};
for (unsigned short i = 2; i <= n; ++i) {
Polynomial c = twox*b - a;
a = b;
b = c;
}
std::vector<std::pair<AA, Multiplicity>> roots;
solve(b - 1, std::back_inserter(roots));
AA one{1}, cos{-2};
for (auto i = roots.begin(), e = roots.end(); i != e; ++i) {
AA cur = i->first;
if (cur < one && cur > cos)
cos = cur;
}
AA sin = CGAL::sqrt(to_AA(1) - cos*cos);
//DBG("sin="<<CGAL::to_double(sin)<<", cos="<<CGAL::to_double(cos));
return 0;
}
int main(int argc, char** argv) {
for (int i = 1; i < argc; ++i) {
unsigned short n;
std::istringstream(argv[i]) >> n;
std::cout << n << ": " << run(n) << std::endl;
}
return 0;
}
答案 0 :(得分:1)
CGAL还附带CORE library,它提供您需要的操作。
以下是一些代码(由OP自己提供)来准确计算sin和cos:
#include <utility>
#include <CGAL/CORE_Expr.h>
#include <CGAL/Polynomial.h>
#include <CGAL/number_utils.h>
typedef CORE::Expr AA;
typedef CGAL::Polynomial<AA> Polynomial;
// return sin(θ) and cos(θ) for θ = 2π/n
static std::pair<AA, AA> sin_cos(unsigned short n) {
// We actually use -x instead of x since root_of will give the k-th
// smallest root but we want the second largest one without counting.
Polynomial x{CGAL::shift(Polynomial(-1), 1)}, twox{2*x};
Polynomial a{1}, b{x};
for (unsigned short i = 2; i <= n; ++i) {
Polynomial c = twox*b - a;
a = b;
b = c;
}
a = b - 1;
AA cos = -CGAL::root_of(2, a.begin(), a.end());
AA sin = CGAL::sqrt(AA(1) - cos*cos);
return std::make_pair(sin, cos);
}