我正在尝试解决this CodeChef problem:
桌子上有N个硬币,编号从0到N-1。最初,每个硬币都保持垂直。
您必须执行两种类型的操作:
- 表示
翻转A和B之间编号的所有硬币。这由命令“0 A B”
- 醇>
回答在A和B之间编号的硬币数是多少。这由命令“1 A B”表示。
输入:第一行包含两个整数N和Q.如下所述,下一个Q行中的每一行都是“0 A B”或“1 A B”形式。
输出:为“1 A B”形式的每个查询输出1行,其中包含相应查询的必需答案。
我使用的是段树。因此,每次用户输入类型1 A B的查询时,输出就是该区间[A,B]的总和。但是我收到超出时间限制的错误。我相信错误是由更新步骤0 A B引起的。更新数组中的元素后,我重新构建了树。代码如下。有人可以通过更快的方式帮助我更新吗?
BTW - 我得到了样本输入的所需输出。
public class SegmentTree
{
private int[] tree;
private int maxsize;
private int height;
private static int elems[];
private final int STARTINDEX = 0;
private final int ENDINDEX;
private final int ROOT = 0;
public SegmentTree(int size)
{
height = (int)(Math.ceil(Math.log(size) / Math.log(2)));
maxsize = 2 * (int) Math.pow(2, height) - 1;
tree = new int[maxsize];
ENDINDEX = size - 1;
}
private int leftchild(int pos)
{
return 2 * pos + 1;
}
private int rightchild(int pos)
{
return 2 * pos + 2;
}
private int mid(int start, int end)
{
return (start + (end - start) / 2);
}
private int getSumUtil(int startIndex, int endIndex, int queryStart, int queryEnd, int current)
{
if (queryStart <= startIndex && queryEnd >= endIndex)
{
return tree[current];
}
if (endIndex < queryStart || startIndex > queryEnd)
{
return 0;
}
int mid = mid(startIndex, endIndex);
return getSumUtil(startIndex, mid, queryStart, queryEnd, leftchild(current))
+ getSumUtil( mid + 1, endIndex, queryStart, queryEnd, rightchild(current));
}
public int getSum(int queryStart, int queryEnd)
{
if(queryStart < 0 || queryEnd > tree.length)
{
return -1;
}
return getSumUtil(STARTINDEX, ENDINDEX, queryStart, queryEnd, ROOT);
}
private int constructSegmentTreeUtil(int startIndex, int endIndex, int current)
{
if (startIndex == endIndex)
{
tree[current] = elems[startIndex];
return tree[current];
}
int mid = mid(startIndex, endIndex);
tree[current] = constructSegmentTreeUtil(startIndex, mid, leftchild(current))
+ constructSegmentTreeUtil(mid + 1, endIndex, rightchild(current));
return tree[current];
}
public void constructSegmentTree()
{
constructSegmentTreeUtil(STARTINDEX, ENDINDEX, ROOT);
}
public static void main(String[]args) throws IOException
{
BufferedReader buf = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer str = new StringTokenizer(buf.readLine());
int n = Integer.parseInt(str.nextToken());
int q = Integer.parseInt(str.nextToken());
SegmentTree segmentTree = new SegmentTree(n);
int elements[] = new int[n];
for(int i = 0; i < n; i++) {
elements[i] = 0;
}
elems = elements;
segmentTree.constructSegmentTree();
while (q-- > 0) {
str = new StringTokenizer(buf.readLine());
int x = Integer.parseInt(str.nextToken());
int a = Integer.parseInt(str.nextToken());
int b = Integer.parseInt(str.nextToken());
if(x == 0) {
for(int j = a; j <= b; j++)
{
elems[j] = elems[j]^1;
}
segmentTree.constructSegmentTree();
}
else {
int num = segmentTree.getSum(a, b);
System.out.println(num);
}
}
}
}
编辑:
According to GeeksForGeeks,树构造成本为O(n),更新方法为O(log n)。以下是更新的新方法:
private void updateTreeUtil(int startIndex, int endIndex, int updatePos, int update, int current)
{
if ( updatePos < startIndex || updatePos > endIndex)
{
return;
}
tree[current] = tree[current] + update;
if (startIndex != endIndex)
{
int mid = mid(startIndex, endIndex);
updateTreeUtil(startIndex, mid, updatePos, update, leftchild(current));
updateTreeUtil(mid+1, endIndex, updatePos, update, rightchild(current));
}
}
public void update(int update, int updatePos)
{
int updatediff = update - elems[updatePos];
elems[updatePos] = update;
updateTreeUtil(STARTINDEX, ENDINDEX, updatePos, updatediff, ROOT);
}
现在main方法中的if循环被修改为:
if(x == 0) {
for(int j = a; j <= b; j++)
{
segmentTree.update(elems[j]^1, j);
}
}
但仍然收到TLE错误。
答案 0 :(得分:0)
在GeeksForGeeks的教程中,在更新单个元素的情况下,它们的更新运行时间为O(log n)。但是,在更新间隔时,必须使用Lazy Propagation来确保O(log n)更新时间,这基本上只是访问的更新节点,因此确保访问节点的总和是正确的。您可以搜索许多有关Lazy Propagation的好教程,例如:
http://se7so.blogspot.hk/2012/12/segment-trees-and-lazy-propagation.html
希望有所帮助。