我正在尝试使用OpenGL API实现Variance Shadow Map技术。我一直在使用教程(Fabien Sanglard的软阴影和VSM),并且每一步都遵循,但我的阴影贴图看起来有点奇怪。我注意到的主要事情是,当我改变光(透视)投影矩阵的近剪裁平面时,它开始看起来很奇怪。
例如,这是它在1.0f附近剪辑http://postimg.org/image/rupf6wqcx/的样子(这个结果被认为是好的)
这里是0.1f值http://postimg.org/image/fox04z14z/
请注意,灯光的位置保持不变。
我一直试图找到连续3天没有结果的错误。 你能帮帮我吗?
这是阴影片段着色器的代码。
in vec4 v_position;
out vec4 color;
void main()
{
float depth = v_position.z / v_position.w;
depth = depth * 0.5 + 0.5;
float dx = dFdx(depth);
float dy = dFdy(depth);
float moment1 = depth;
float moment2 = depth * depth - 0.25 * (dx * dx + dy * dy);
color = vec4(moment1, moment2, 0.0, 1.0);
}
影子映射部分来自实际渲染传递片段着色器
in vec4 ShadowPosition;
out vec4 outColor;
uniform sampler2D shadowMap;
vec4 sc;
float chebyshevUpperBound(float distance)
{
float p = 0.0;
// We retrive the two moments previously stored (depth and depth*depth)
vec2 moments = texture2D(shadowMap, sc.xy).rg;
// Surface is fully lit. as the current fragment is before the light occluder
if (distance <= moments.x)
p = 1.0;
// The fragment is either in shadow or penumbra. We now use chebyshev's upperBound to check
// How likely this pixel is to be lit (p_max)
float variance = moments.y - (moments.x * moments.x);
variance = max(variance, 0.00001);
float d = distance - moments.x;
float p_max = variance / (variance + d*d);
return max(p, p_max);
}
void main()
{
/* Shadow Mapping */
vec3 pixColor = vec3(1.0, 1.0, 1.0);
sc = ShadowPosition / ShadowPosition.w;
sc = sc * 0.5 + 0.5;
float visibility = chebyshevUpperBound(sc.z);
outColor = vec4(visibility * pixColor, 1.0);
}
顶点着色器非常简单,使用MVP矩阵从光或相机的角度计算顶点,所以我不认为我需要发布它们。
此代码用于初始化和呈现:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glGenFramebuffers(1, &FramebufferName);
glGenTextures(1, &light_s.shadowBO);
glBindTexture(GL_TEXTURE_2D, light_s.shadowBO);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 1024, 1024, 0, GL_RGBA, GL_FLOAT, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
glGenTextures(1, &light_s.shadowBOZ);
glBindTexture(GL_TEXTURE_2D, light_s.shadowBOZ);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, light_s.shadowBO, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, light_s.shadowBOZ, 0);
while (running)
{
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
else
{
/* Shadow pass */
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);
glViewport(0, 0, 1024, 1024);
glDrawBuffer(GL_BACK);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glUseProgram(theShadowProgram);
glEnableVertexAttribArray(svxposition);
glUniformMatrix4fv(spmatrix, 1, GL_FALSE, light_s.mProjection);
glUniformMatrix4fv(svmatrix, 1, GL_FALSE, light_s.mView);
glUniformMatrix4fv(smmatrix, 1, GL_FALSE, bunny_s.mModel);
glBindBuffer(GL_ARRAY_BUFFER, bunny_s.vertexBufferObject);
glVertexAttribPointer(svxposition, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bunny_s.elementBufferObject);
glDrawElements(GL_TRIANGLES, bunny_s.elementBufferSize, GL_UNSIGNED_INT, NULL);
glBindBuffer(GL_ARRAY_BUFFER, vbplaneVert);
glVertexAttribPointer(svxposition, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbplaneElem);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL);
glDisableVertexAttribArray(svxposition);
/* Rendering pass */
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0, 0, 1024, 768);
glDrawBuffer(GL_BACK);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glUseProgram(theProgram);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, light_s.shadowBO);
glEnableVertexAttribArray(vxposition);
glEnableVertexAttribArray(normals);
glUniformMatrix4fv(dpmatrix, 1, GL_FALSE, light_s.mProjection);
glUniformMatrix4fv(dvmatrix, 1, GL_FALSE, light_s.mView);
glUniformMatrix4fv(dbmatrix, 1, GL_FALSE, mDepthBias);
glUniformMatrix4fv(pmatrix, 1, GL_FALSE, camera_s.mProjection);
glUniformMatrix4fv(vmatrix, 1, GL_FALSE, camera_s.mView);
glUniformMatrix4fv(mmatrix, 1, GL_FALSE, bunny_s.mModel);
glUniform3f(campos, camera_s.x, camera_s.y, camera_s.z);
glUniform3f(lightpos, light_s.x, light_s.y, light_s.z);
glUniform1i(frsampler, 0);
glBindBuffer(GL_ARRAY_BUFFER, bunny_s.vertexBufferObject);
glVertexAttribPointer(vxposition, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, bunny_s.normalBufferObject);
glVertexAttribPointer(normals, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bunny_s.elementBufferObject);
glDrawElements(GL_TRIANGLES, bunny_s.elementBufferSize, GL_UNSIGNED_INT, NULL);
glBindBuffer(GL_ARRAY_BUFFER, vbplaneVert);
glVertexAttribPointer(vxposition, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, vbplaneNorm);
glVertexAttribPointer(normals, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbplaneElem);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL);
glDisableVertexAttribArray(vxposition);
glDisableVertexAttribArray(normals);
}
}
它没有经过优化,但现在也可以。
答案 0 :(得分:3)
如果使用GL_RG32F
代替GL_RGBA32F
,color.zw
(BA
)不变,则可以将shadowmap存储和内存带宽要求减半。此外,您知道depth * depth
与depth
相比变化非常缓慢,您通过透视投影越接近近平面?如您在屏幕截图中看到的那样,这会导致精度问题。这两件事都在this paper的集成部分进行了简要讨论。
基本上,您需要更智能地管理近距离和远距离平面(更接近最小/最大距离)...这对于任何阴影贴图算法都是很好的做法,但对VSM尤其重要。
我会考虑完全抛弃透视深度并消除精度的非线性分布问题(你不需要投影深度让算法工作,如果计算距离光的常规距离,它将正常工作) 。 对您遇到的主要问题有很大帮助。