我正在尝试使用Cormen的伪代码实现BST算法但仍有问题。
这是我的节点代码:
public class Node {
Node left;
Node right;
int value;
Node(int value){
this.value = value;
this.left = null;
this.right = null;
}
}
和Bstree:
public class Btree {
Node root;
Btree(){
this.root = null;
}
public static void inorderWalk(Node n){
if(n != null){
inorderWalk(n.left);
System.out.print(n.value + " ");
inorderWalk(n.right);
}
}
public static Node getParent(Btree t, Node n){
Node current = t.root;
Node parent = null;
while(true){
if (current == null)
return null;
if( current.value == n.value ){
break;
}
if (current.value > n.value){
parent = current;
current = current.left;
}
else{ //(current.value < n.value)
parent = current;
current = current.right;
}
}
return parent;
}
public static Node search(Node n,int key){
if(n == null || key == n.value ){
return n;
}
if(key < n.value){
return search(n.left,key);
}
else{
return search(n.right,key);
}
}
public static Node treeMinimum(Node x){
if(x == null){
return null;
}
while(x.left != null){
x = x.left;
}
return x;
}
public static Node treeMaximum(Node x){
if(x == null){
return null;
}
while(x.right != null){
x = x.right;
}
return x;
}
public static Node treeSuccessor(Btree t,Node x){
if (x.right == null){
return treeMinimum(x.right);
}
Node y = getParent(t,x);
while(y != null && x == y.right){
x = y;
y = getParent(t,y);
}
return y;
}
public static Btree insert(Btree t,Node z){
Node y = null;
Node x = t.root;
while(x != null){
y = x;
if(z.value < x.value)
x = x.left;
else
x = x.right;
}
Node tmp = getParent(t,z);
tmp = y;
if(y == null){
t.root = z;
}
else if(z.value < y.value)
y.left = z;
else
y.right = z;
return t;
}
public static Btree delete(Btree t,Node z){
Node y,x;
if (z.left == null || z.right == null)
y = z;
else
y = treeSuccessor(t,z);
if (y.left != null)
x = y.left;
else
x = y.right;
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
if (getParent(t,y) == null ){
t.root = x;
}
else{
if( y == getParent(t,y).left ){
getParent(t,y).left = x;
}
else{
getParent(t,y).right = x;
}
}
if(y != z){
z.value = y.value;
}
return t;
}
public static void main(String[] args){
Btree test = new Btree();
Node n1 = new Node(6);
Node n2 = new Node(3);
Node n3 = new Node(9);
Node n4 = new Node(1);
Node n5 = new Node(16);
Node n6 = new Node(4);
Node n7 = new Node(2);
Node n8 = new Node(11);
Node n9 = new Node(13);
test = insert(test,n1);
test = insert(test,n2);
test = insert(test,n3);
test = insert(test,n4);
test = insert(test,n5);
test = insert(test,n6);
test = insert(test,n7);
test = insert(test,n8);
test = insert(test,n9);
inorderWalk(test.root);
System.out.println();
test = delete(test,n8);
inorderWalk(test.root);
System.out.println();
test = delete(test,n5);
inorderWalk(test.root);
System.out.println();
test = delete(test,n2);
inorderWalk(test.root);
System.out.println();
test = delete(test,n1);
inorderWalk(test.root);
}
}
主要问题是删除部分,有时它按预期工作,有时删除错误,有时空指针异常。可能是什么问题?
Ps:这不是作业
答案 0 :(得分:5)
您的代码存在一些直接问题:您的treeSuccessor
以
if (x.right == null){
return treeMinimum(x.right);
}
当然应该是if (x.right != null)
。
您的insert
代码包含
Node tmp = getParent(t,z);
tmp = y;
您分配给tmp
并立即再次分配给它。在我看来你根本不需要这些行,因为你不再使用tmp
。此时,您y
是其子z
插入的节点,因此只需删除这些行。
同样,在delete
中,您有
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
您实际上没有做任何事情,因为在此代码段之外看不到tmp
。接下来,在delete
中,重复表达式getParent(t,y)
,这可能是一项昂贵的操作,因此您应该只计算一次并将其分配给某个变量。
但总的来说,你的代码虽然看起来是正确的(可能除了delete
,我完全不了解但看起来很可疑),但它与典型的二叉树代码并不相似。您实际上并不需要getParent
和treeSuccessor
方法来实施search
,insert
和delete
。 search
的基本结构也适用于其他人,具有以下修改:
insert
,当您转到null
链接,而不是返回null
时,请将元素插入该点delete
,当您找到该元素时,如果它只有一个(或没有)子元素,则将其替换为该子元素,如果它有两个子元素,则将其替换为左子元素的最大值树或最小的右子树这两个都需要您在下降到树时跟踪父节点,但这是您需要对search
进行的唯一修改。特别是,从来没有必要在树中向上(treeSuccessor
将会这样做。)
答案 1 :(得分:3)
首先,您的实现与面向对象无关(除了使用对象)。例如,插入和删除操作应该在树上运行。
此外,我建议将Node类实现为Tree类的静态成员。
public class Tree {
private Node root = null;
// remainder omitted
public boolean insert(int element) {
if (isEmpty()) {
root = new Node(element);
return true; // empty tree, Node could be inserted, return true
}
Node current = root; // start at root
Node parent; // the current Node's parent
do {
parent = current;
if (element < current.element) {
current = current.left; // go to left
} else if (element > current.element) {
current = current.right; // go to right
} else {
return false; // duplicates are NOT allowed, element could not be inserted -> return false
} while (current != null);
Node node = new Node(element);
if (element < current.element) {
parent.left = node;
} else {
parent.right = node;
}
return true; // node successfully inserted
}
public boolean isEmpty() {
return root == null;
}
private static class Node { // static member class
Node left = null;
Node right = null;
final int element;
Node(int element) {
this.element = element;
}
}
}
答案 2 :(得分:2)
...您的删除代码是什么?它没有多大意义。我会考虑以更合理的方式重写它。没有无意义的单字母变量名称。并添加评论!
一种可能的算法是:
Get the parent of the node to delete
Get the right-most node of the left subtree, or the leftmost node of the right subtree
Remove the node to delete and replace it with the node you found
Rebalance the tree
...或者,如果你想破解这些东西,那么它是正确的,我会开始看
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
部分,因为显然错误。
答案 3 :(得分:1)
我将不得不支持Anon并进行重写。空指针来自您的getParent
函数(它在其他事物中显式返回空值)。所以我会从那里开始修复函数,以便它们只在函数末尾返回一件事和一件事。
答案 4 :(得分:1)
以下是Java中二进制搜索树的完整实现 insert,search,countNodes,traversal,delete,empty,maximum&amp;最小节点,查找父节点,打印所有叶节点,获取级别,获取高度,获取深度,打印左视图,镜像视图
import java.util.NoSuchElementException;
import java.util.Scanner;
import org.junit.experimental.max.MaxCore;
class BSTNode {
BSTNode left = null;
BSTNode rigth = null;
int data = 0;
public BSTNode() {
super();
}
public BSTNode(int data) {
this.left = null;
this.rigth = null;
this.data = data;
}
@Override
public String toString() {
return "BSTNode [left=" + left + ", rigth=" + rigth + ", data=" + data + "]";
}
}
class BinarySearchTree {
BSTNode root = null;
public BinarySearchTree() {
}
public void insert(int data) {
BSTNode node = new BSTNode(data);
if (root == null) {
root = node;
return;
}
BSTNode currentNode = root;
BSTNode parentNode = null;
while (true) {
parentNode = currentNode;
if (currentNode.data == data)
throw new IllegalArgumentException("Duplicates nodes note allowed in Binary Search Tree");
if (currentNode.data > data) {
currentNode = currentNode.left;
if (currentNode == null) {
parentNode.left = node;
return;
}
} else {
currentNode = currentNode.rigth;
if (currentNode == null) {
parentNode.rigth = node;
return;
}
}
}
}
public int countNodes() {
return countNodes(root);
}
private int countNodes(BSTNode node) {
if (node == null) {
return 0;
} else {
int count = 1;
count += countNodes(node.left);
count += countNodes(node.rigth);
return count;
}
}
public boolean searchNode(int data) {
if (empty())
return empty();
return searchNode(data, root);
}
public boolean searchNode(int data, BSTNode node) {
if (node != null) {
if (node.data == data)
return true;
else if (node.data > data)
return searchNode(data, node.left);
else if (node.data < data)
return searchNode(data, node.rigth);
}
return false;
}
public boolean delete(int data) {
if (empty())
throw new NoSuchElementException("Tree is Empty");
BSTNode currentNode = root;
BSTNode parentNode = root;
boolean isLeftChild = false;
while (currentNode.data != data) {
parentNode = currentNode;
if (currentNode.data > data) {
isLeftChild = true;
currentNode = currentNode.left;
} else if (currentNode.data < data) {
isLeftChild = false;
currentNode = currentNode.rigth;
}
if (currentNode == null)
return false;
}
// CASE 1: node with no child
if (currentNode.left == null && currentNode.rigth == null) {
if (currentNode == root)
root = null;
if (isLeftChild)
parentNode.left = null;
else
parentNode.rigth = null;
}
// CASE 2: if node with only one child
else if (currentNode.left != null && currentNode.rigth == null) {
if (root == currentNode) {
root = currentNode.left;
}
if (isLeftChild)
parentNode.left = currentNode.left;
else
parentNode.rigth = currentNode.left;
} else if (currentNode.rigth != null && currentNode.left == null) {
if (root == currentNode)
root = currentNode.rigth;
if (isLeftChild)
parentNode.left = currentNode.rigth;
else
parentNode.rigth = currentNode.rigth;
}
// CASE 3: node with two child
else if (currentNode.left != null && currentNode.rigth != null) {
// Now we have to find minimum element in rigth sub tree
// that is called successor
BSTNode successor = getSuccessor(currentNode);
if (currentNode == root)
root = successor;
if (isLeftChild)
parentNode.left = successor;
else
parentNode.rigth = successor;
successor.left = currentNode.left;
}
return true;
}
private BSTNode getSuccessor(BSTNode deleteNode) {
BSTNode successor = null;
BSTNode parentSuccessor = null;
BSTNode currentNode = deleteNode.left;
while (currentNode != null) {
parentSuccessor = successor;
successor = currentNode;
currentNode = currentNode.left;
}
if (successor != deleteNode.rigth) {
parentSuccessor.left = successor.left;
successor.rigth = deleteNode.rigth;
}
return successor;
}
public int nodeWithMinimumValue() {
return nodeWithMinimumValue(root);
}
private int nodeWithMinimumValue(BSTNode node) {
if (node.left != null)
return nodeWithMinimumValue(node.left);
return node.data;
}
public int nodewithMaximumValue() {
return nodewithMaximumValue(root);
}
private int nodewithMaximumValue(BSTNode node) {
if (node.rigth != null)
return nodewithMaximumValue(node.rigth);
return node.data;
}
public int parent(int data) {
return parent(root, data);
}
private int parent(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode parent = null;
BSTNode current = node;
while (current.data != data) {
parent = current;
if (current.data > data)
current = current.left;
else
current = current.rigth;
if (current == null)
throw new IllegalArgumentException(data + " is not a node in tree");
}
return parent.data;
}
public int sibling(int data) {
return sibling(root, data);
}
private int sibling(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode cureent = node;
BSTNode parent = null;
boolean isLeft = false;
while (cureent.data != data) {
parent = cureent;
if (cureent.data > data) {
cureent = cureent.left;
isLeft = true;
} else {
cureent = cureent.rigth;
isLeft = false;
}
if (cureent == null)
throw new IllegalArgumentException("No Parent node found");
}
if (isLeft) {
if (parent.rigth != null) {
return parent.rigth.data;
} else
throw new IllegalArgumentException("No Sibling is there");
} else {
if (parent.left != null)
return parent.left.data;
else
throw new IllegalArgumentException("No Sibling is there");
}
}
public void leafNodes() {
if (empty())
throw new IllegalArgumentException("Empty");
leafNode(root);
}
private void leafNode(BSTNode node) {
if (node == null)
return;
if (node.rigth == null && node.left == null)
System.out.print(node.data + " ");
leafNode(node.left);
leafNode(node.rigth);
}
public int level(int data) {
if (empty())
throw new IllegalArgumentException("Empty");
return level(root, data, 1);
}
private int level(BSTNode node, int data, int level) {
if (node == null)
return 0;
if (node.data == data)
return level;
int result = level(node.left, data, level + 1);
if (result != 0)
return result;
result = level(node.rigth, data, level + 1);
return result;
}
public int depth() {
return depth(root);
}
private int depth(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(depth(node.left), depth(node.rigth));
}
public int height() {
return height(root);
}
private int height(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(height(node.left), height(node.rigth));
}
public void leftView() {
leftView(root);
}
private void leftView(BSTNode node) {
if (node == null)
return;
int height = height(node);
for (int i = 1; i <= height; i++) {
printLeftView(node, i);
}
}
private boolean printLeftView(BSTNode node, int level) {
if (node == null)
return false;
if (level == 1) {
System.out.print(node.data + " ");
return true;
} else {
boolean left = printLeftView(node.left, level - 1);
if (left)
return true;
else
return printLeftView(node.rigth, level - 1);
}
}
public void mirroeView() {
BSTNode node = mirroeView(root);
preorder(node);
System.out.println();
inorder(node);
System.out.println();
postorder(node);
System.out.println();
}
private BSTNode mirroeView(BSTNode node) {
if (node == null || (node.left == null && node.rigth == null))
return node;
BSTNode temp = node.left;
node.left = node.rigth;
node.rigth = temp;
mirroeView(node.left);
mirroeView(node.rigth);
return node;
}
public void preorder() {
preorder(root);
}
private void preorder(BSTNode node) {
if (node != null) {
System.out.print(node.data + " ");
preorder(node.left);
preorder(node.rigth);
}
}
public void inorder() {
inorder(root);
}
private void inorder(BSTNode node) {
if (node != null) {
inorder(node.left);
System.out.print(node.data + " ");
inorder(node.rigth);
}
}
public void postorder() {
postorder(root);
}
private void postorder(BSTNode node) {
if (node != null) {
postorder(node.left);
postorder(node.rigth);
System.out.print(node.data + " ");
}
}
public boolean empty() {
return root == null;
}
}
public class BinarySearchTreeTest {
public static void main(String[] l) {
System.out.println("Weleome to Binary Search Tree");
Scanner scanner = new Scanner(System.in);
boolean yes = true;
BinarySearchTree tree = new BinarySearchTree();
do {
System.out.println("\n1. Insert");
System.out.println("2. Search Node");
System.out.println("3. Count Node");
System.out.println("4. Empty Status");
System.out.println("5. Delete Node");
System.out.println("6. Node with Minimum Value");
System.out.println("7. Node with Maximum Value");
System.out.println("8. Find Parent node");
System.out.println("9. Count no of links");
System.out.println("10. Get the sibling of any node");
System.out.println("11. Print all the leaf node");
System.out.println("12. Get the level of node");
System.out.println("13. Depth of the tree");
System.out.println("14. Height of Binary Tree");
System.out.println("15. Left View");
System.out.println("16. Mirror Image of Binary Tree");
System.out.println("Enter Your Choice :: ");
int choice = scanner.nextInt();
switch (choice) {
case 1:
try {
System.out.println("Enter Value");
tree.insert(scanner.nextInt());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 2:
System.out.println("Enter the node");
System.out.println(tree.searchNode(scanner.nextInt()));
break;
case 3:
System.out.println(tree.countNodes());
break;
case 4:
System.out.println(tree.empty());
break;
case 5:
try {
System.out.println("Enter the node");
System.out.println(tree.delete(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 6:
try {
System.out.println(tree.nodeWithMinimumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 7:
try {
System.out.println(tree.nodewithMaximumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 8:
try {
System.out.println("Enter the node");
System.out.println(tree.parent(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 9:
try {
System.out.println(tree.countNodes() - 1);
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 10:
try {
System.out.println("Enter the node");
System.out.println(tree.sibling(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 11:
try {
tree.leafNodes();
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 12:
try {
System.out.println("Enter the node");
System.out.println("Level is : " + tree.level(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 13:
try {
System.out.println(tree.depth());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 14:
try {
System.out.println(tree.height());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 15:
try {
tree.leftView();
System.out.println();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 16:
try {
tree.mirroeView();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
default:
break;
}
tree.preorder();
System.out.println();
tree.inorder();
System.out.println();
tree.postorder();
} while (yes);
scanner.close();
}
}
答案 5 :(得分:0)
根据我对二进制搜索树实现的以下理解,请看 并让我知道需要任何反馈
请查看主要方法。因此,请提供您的反馈意见,以进一步改善我的观点。
public class BinarySearchTree {
private Node root;
public BinarySearchTree() {
root = null;
}
public BinarySearchTree(int rootData) {
root = new Node(rootData);
}
public void insertElement(int element,Node parent) {
Node temp = root;
if(parent!=null) temp = parent;
if(temp!=null) {
Node node = new Node(element);
if(element<temp.getData()) {
if(temp.getLeft()!=null)
insertElement(element, temp.getLeft());
else
temp.setLeft(node);
}else if(element>temp.getData()) {
if(temp.getRight()!=null)
insertElement(element, temp.getRight());
else
temp.setRight(node);
}
}
}
public void traverseInOrder() {
if(root!=null) {
traverse(root.getLeft());
System.out.println(root.getData());
traverse(root.getRight());
}
}
public void traverse(Node temp) {
if(temp!=null) {
traverse(temp.getLeft());
System.out.println(temp.getData());
traverse(temp.getRight());
}
}
public int searchElement(int element,Node node) {
Node temp = root;
if(node!=null) temp = node;
if(temp!=null) {
if(temp.getData()<element) {
if(temp.getRight()!=null)
return searchElement(element, temp.getRight());
}else if(temp.getData()>element) {
if(temp.getLeft()!=null)
return searchElement(element,temp.getLeft());
}else if(temp.getData()==element){
return temp.getData();
}
}
return -1;
}
public void remove(int element,Node node,Node predecer) {
Node temp = root;
if(node!=null) temp = node;
if(temp!=null) {
if(temp.getData()>element) {
remove(element, temp.getLeft(), temp);
}else if(temp.getData()<element) {
remove(element, temp.getRight(), temp);
}else if(element==temp.getData()) {
if(temp.getLeft()==null && temp.getRight()==null) {
if(predecer.getData()>temp.getData()) {
predecer.setLeft(null);
}else if(predecer.getData()<temp.getData()) {
predecer.setRight(null);
}
}else if(temp.getLeft()!=null && temp.getRight()==null) {
predecer.setRight(temp.getLeft());
}else if(temp.getLeft()==null && temp.getRight()!=null) {
predecer.setLeft(temp.getRight());
}else if(temp.getLeft()!=null && temp.getRight()!=null) {
Node leftMostElement = findMaximumLeft(temp.getLeft());
if(leftMostElement!=null) {
remove(leftMostElement.getData(), temp, temp);
temp.setData(leftMostElement.getData());
}
}
}
}
}
public Node findMaximumLeft(Node parent) {
Node temp = parent;
if(temp.getRight()!=null)
return findMaximumLeft(temp.getRight());
else
return temp;
}
public static void main(String[] args) {
BinarySearchTree bs = new BinarySearchTree(10);
bs.insertElement(29, null);
bs.insertElement(19, null);
bs.insertElement(209, null);
bs.insertElement(6, null);
bs.insertElement(7, null);
bs.insertElement(17, null);
bs.insertElement(37, null);
bs.insertElement(67, null);
bs.insertElement(-7, null);
bs.remove(6, null, null);
bs.traverseInOrder();}}