独立滚动矩阵的行

时间:2013-12-03 20:09:24

标签: python performance numpy

我有一个矩阵(确切地说是2d numpy ndarray):

A = np.array([[4, 0, 0],
              [1, 2, 3],
              [0, 0, 5]])

我想根据另一个数组中的滚动值独立地滚动A的每一行:

r = np.array([2, 0, -1])

也就是说,我想这样做:

print np.array([np.roll(row, x) for row,x in zip(A, r)])

[[0 0 4]
 [1 2 3]
 [0 5 0]]

有没有办法有效地做到这一点?也许使用花哨的索引技巧?

6 个答案:

答案 0 :(得分:15)

当然你可以使用高级索引来做到这一点,无论它是最快的方式,可能取决于你的数组大小(如果你的行很大,可能不是):

rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]

# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:, np.newaxis]

result = A[rows, column_indices]

答案 1 :(得分:2)

numpy.lib.stride_tricks.as_strided再次敲击(意为双关语)!

谈到花哨的索引技巧,有臭名昭著的-np.lib.stride_tricks.as_strided。想法/技巧是从第一列开始到第二倒数第二个切片,然后在末尾连接。这确保了我们可以根据需要向前迈进以利用np.lib.stride_tricks.as_strided,从而避免了实际回滚的需要。这就是整个想法!

现在,就实际实现而言,我们将使用scikit-image's view_as_windows来巧妙地使用np.lib.stride_tricks.as_strided。因此,最终的实现将是-

from skimage.util.shape import view_as_windows as viewW

def strided_indexing_roll(a, r):
    # Concatenate with sliced to cover all rolls
    a_ext = np.concatenate((a,a[:,:-1]),axis=1)

    # Get sliding windows; use advanced-indexing to select appropriate ones
    n = a.shape[1]
    return viewW(a_ext,(1,n))[np.arange(len(r)), (n-r)%n,0]

这是一个示例运行-

In [327]: A = np.array([[4, 0, 0],
     ...:               [1, 2, 3],
     ...:               [0, 0, 5]])

In [328]: r = np.array([2, 0, -1])

In [329]: strided_indexing_roll(A, r)
Out[329]: 
array([[0, 0, 4],
       [1, 2, 3],
       [0, 5, 0]])

基准化

# @seberg's solution
def advindexing_roll(A, r):
    rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]    
    r[r < 0] += A.shape[1]
    column_indices = column_indices - r[:,np.newaxis]
    return A[rows, column_indices]

让我们对具有大量行和列的数组进行一些基准测试-

In [324]: np.random.seed(0)
     ...: a = np.random.rand(10000,1000)
     ...: r = np.random.randint(-1000,1000,(10000))

# @seberg's solution
In [325]: %timeit advindexing_roll(a, r)
10 loops, best of 3: 71.3 ms per loop

#  Solution from this post
In [326]: %timeit strided_indexing_roll(a, r)
10 loops, best of 3: 44 ms per loop

答案 2 :(得分:1)

我实现了如下的纯numpy.lib.stride_tricks.as_strided解决方案

from numpy.lib.stride_tricks import as_strided

def custom_roll(arr, r_tup):
    m = np.asarray(r_tup)
    arr_roll = arr[:, [*range(arr.shape[1]),*range(arr.shape[1]-1)]].copy() #need `copy`
    strd_0, strd_1 = arr_roll.strides
    n = arr.shape[1]
    result = as_strided(arr_roll, (*arr.shape, n), (strd_0 ,strd_1, strd_1))

    return result[np.arange(arr.shape[0]), (n-m)%n]

A = np.array([[4, 0, 0],
              [1, 2, 3],
              [0, 0, 5]])

r = np.array([2, 0, -1])

out = custom_roll(A, r)

Out[789]:
array([[0, 0, 4],
       [1, 2, 3],
       [0, 5, 0]])

答案 3 :(得分:0)

如果您想要更一般的解决方案(处理任何形状和任何轴),我修改了@seberg的解决方案:

def indep_roll(arr, shifts, axis=1):
    """Apply an independent roll for each dimensions of a single axis.

    Parameters
    ----------
    arr : np.ndarray
        Array of any shape.

    shifts : np.ndarray
        How many shifting to use for each dimension. Shape: `(arr.shape[axis],)`.

    axis : int
        Axis along which elements are shifted. 
    """
    arr = np.swapaxes(arr,axis,-1)
    all_idcs = np.ogrid[[slice(0,n) for n in arr.shape]]

    # Convert to a positive shift
    shifts[shifts < 0] += arr.shape[-1] 
    all_idcs[-1] = all_idcs[-1] - shifts[:, np.newaxis]

    result = arr[tuple(all_idcs)]
    arr = np.swapaxes(result,-1,axis)
    return arr

答案 4 :(得分:0)

基于divakar的出色答案,您可以轻松地将此逻辑应用于3D阵列(这是使我首先来到这里的问题)。这是一个示例-基本上将数据弄平,滚动并在之后重新调整形状:

def applyroll_30(cube, threshold=25, offset=500):
    flattened_cube = cube.copy().reshape(cube.shape[0]*cube.shape[1], cube.shape[2])

    roll_matrix = calc_roll_matrix_flattened(flattened_cube, threshold, offset)

    rolled_cube = strided_indexing_roll(flattened_cube, roll_matrix, cube_shape=cube.shape)

    rolled_cube = triggered_cube.reshape(cube.shape[0], cube.shape[1], cube.shape[2])
    return rolled_cube


def calc_roll_matrix_flattened(cube_flattened, threshold, offset):
    """ Calculates the number of position along time axis we need to shift
        elements in order to trig the data.
        We return a 1D numpy array of shape (X*Y, time) elements
    """

    # armax(...) finds the position in the cube (3d) where we are above threshold
    roll_matrix = np.argmax(cube_flattened > threshold, axis=1) + offset
    # ensure we don't have index out of bound
    roll_matrix[roll_matrix>cube_flattened.shape[1]] = cube_flattened.shape[1]          
    return roll_matrix



def strided_indexing_roll(cube_flattened, roll_matrix_flattened, cube_shape):
    # Concatenate with sliced to cover all rolls
    # otherwise we shift in the wrong direction for my application
    roll_matrix_flattened = -1 * roll_matrix_flattened

    a_ext = np.concatenate((cube_flattened, cube_flattened[:, :-1]), axis=1)

    # Get sliding windows; use advanced-indexing to select appropriate ones
    n = cube_flattened.shape[1]
    result = viewW(a_ext,(1,n))[np.arange(len(roll_matrix_flattened)), (n - roll_matrix_flattened) % n, 0]
    result = result.reshape(cube_shape)
    return result

Divakar的答案并不能证明这对大数据量的效率有多高。我已将其定时为格式为int8的400x400x2000数据。等效的for循环执行时间约为5.5秒,Seberg的响应时间约为3.0秒,strided_indexing的响应时间为... 0.5秒。

答案 5 :(得分:0)

通过使用快速傅立叶变换,我们可以在频域中应用变换,然后使用逆快速傅立叶变换来获得行移位。

所以这是一个只需要一行代码的纯 numpy 解决方案:

import numpy as np
from numpy.fft import fft, ifft

# The row shift function using the fast fourrier transform
#   rshift(A,r) where A is a 2D array, r the row shift vector
def rshift(A,r):
     return np.real(ifft(fft(A,axis=1)*np.exp(2*1j*np.pi/A.shape[1]*r[:,None]*np.r_[0:A.shape[1]][None,:]),axis=1).round())

这将应用左移,但我们可以简单地否定指数指数以将函数转换为右移函数:

ifft(fft(...)*np.exp(-2*1j...)

可以这样使用:

# Example:

A = np.array([[1,2,3,4],
              [1,2,3,4],
              [1,2,3,4]])

r = np.array([1,-1,3])

print(rshift(A,r))