这是对here提出的问题(在下面引用)的扩展
我有一个矩阵(准确地说是2d numpy ndarray):
A = np.array([[4, 0, 0], [1, 2, 3], [0, 0, 5]])
根据滚动,我想独立滚动A的每一行 另一个数组中的值:
r = np.array([2, 0, -1])
也就是说,我要这样做:
print np.array([np.roll(row, x) for row,x in zip(A, r)]) [[0 0 4] [1 2 3] [0 5 0]]
有没有办法有效地做到这一点?也许使用花式索引 招吗?
可接受的解决方案是:
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
result = A[rows, column_indices]
我基本上想做同样的事情,除了当索引被“粘贴”到行的末尾时,我希望用NaN填充行的另一侧,而不是将值移到定期排在行的“前”。
也许以某种方式使用np.pad
?但是我无法弄清楚如何用不同的数量填充不同的行。
答案 0 :(得分:2)
受Roll rows of a matrix independently's solution
的启发,这是一个基于np.lib.stride_tricks.as_strided
的矢量化矢量-
<bean id="txManager" class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="entityManagerFactory" />
<property name="dataSource" ref="dataSource" />
<property name="jpaDialect" ref="openJPADialect" />
</bean>
样品运行-
from skimage.util.shape import view_as_windows as viewW
def strided_indexing_roll(a, r):
# Concatenate with sliced to cover all rolls
p = np.full((a.shape[0],a.shape[1]-1),np.nan)
a_ext = np.concatenate((p,a,p),axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = a.shape[1]
return viewW(a_ext,(1,n))[np.arange(len(r)), -r + (n-1),0]
答案 1 :(得分:0)
我能够将其与线性索引结合使用……它获得了正确的结果,但是在大型阵列上的执行速度却很慢。
A = np.array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]]).astype(float)
r = np.array([2, 0, -1])
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r_old = r.copy()
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
result = A[rows, column_indices]
# replace with NaNs
row_length = result.shape[-1]
pad_inds = []
for ind,i in np.enumerate(r_old):
if i > 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(i)]
pad_inds.extend(inds2pad)
if i < 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(row_length+i,row_length)]
pad_inds.extend(inds2pad)
result.ravel()[pad_inds] = nan
给出预期的结果:
print result
[[ nan nan 4.]
[ 1. 2. 3.]
[ 0. 5. nan]]
答案 2 :(得分:0)
基于@Seberg 和@yann-dubois 在非 nan 情况下的回答,我编写了一个方法:
axis
参数指定行轴)fill
设置为 np.nan、任何其他“填充值”或 False 以允许定期滚动数组边缘。cols, rows = 1024, 2048
arr = np.stack(rows*(np.arange(cols,dtype=float),))
shifts = np.random.randint(-cols, cols, rows)
np.testing.assert_array_almost_equal(row_roll(arr, shifts), strided_indexing_roll(arr, shifts))
# True
%timeit row_roll(arr, shifts)
# 25.9 ms ± 161 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit strided_indexing_roll(arr, shifts)
# 29.7 ms ± 446 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
def row_roll(arr, shifts, axis=1, fill=np.nan):
"""Apply an independent roll for each dimensions of a single axis.
Parameters
----------
arr : np.ndarray
Array of any shape.
shifts : np.ndarray, dtype int. Shape: `(arr.shape[:axis],)`.
Amount to roll each row by. Positive shifts row right.
axis : int
Axis along which elements are shifted.
fill: bool or float
If True, value to be filled at missing values. Otherwise just rolls across edges.
"""
if np.issubdtype(arr.dtype, int) and isinstance(fill, float):
arr = arr.astype(float)
shifts2 = shifts.copy()
arr = np.swapaxes(arr,axis,-1)
all_idcs = np.ogrid[[slice(0,n) for n in arr.shape]]
# Convert to a positive shift
shifts2[shifts2 < 0] += arr.shape[-1]
all_idcs[-1] = all_idcs[-1] - shifts2[:, np.newaxis]
result = arr[tuple(all_idcs)]
if fill is not False:
# Create mask of row positions above negative shifts
# or below positive shifts. Then set them to np.nan.
*_, nrows, ncols = arr.shape
mask_neg = shifts < 0
mask_pos = shifts >= 0
shifts_pos = shifts.copy()
shifts_pos[mask_neg] = 0
shifts_neg = shifts.copy()
shifts_neg[mask_pos] = ncols+1 # need to be bigger than the biggest positive shift
shifts_neg[mask_neg] = shifts[mask_neg] % ncols
indices = np.stack(nrows*(np.arange(ncols),))
nanmask = (indices < shifts_pos[:, None]) | (indices >= shifts_neg[:, None])
result[nanmask] = fill
arr = np.swapaxes(result,-1,axis)
return arr