我试图使用scipy odeint解决以下微分方程而没有取得多大成功:
import numpy as np
from scipy.misc import derivative
from scipy.integrate import odeint
Imag = 16000.
w = 2*np.pi*60
tau = .05
theta = 1.52
phi = theta - np.radians(90)
t = np.linspace(0,.1,10000)
def Ip(t):
return np.sqrt(2)*Imag*(np.sin(w*t+phi-theta)-np.exp(-t/tau)*np.sin(phi-theta))
B = lambda Ip: Ip/(53.05+0.55*abs(Ip))
def L(B):
return derivative(B,Ip(t))*377.2
def dI(t):
return derivative(Ip,t)
def f(y,t):
Rb = 8.
N = 240.
Is = y[0]
f0 = (1/(L(B)+0.002))*((dI(t)*L(B)/N)-Rb*y[0])
return [f0]
yinit = [0]
sol = odeint(f,yinit,t)
print sol[:,0]
我一直收到以下错误:
odepack.error: Result from function call is not a proper array of floats.
ValueError: object too deep for desired array
odepack.error: Result from function call is not a proper array of floats.
如何在没有错误的情况下运行脚本?
答案 0 :(得分:0)
使用ode
代替odeint
有一个与你相似的问题: How to make odeint successful?
答案 1 :(得分:0)
此功能存在问题:
def L(B):
return derivative(B,Ip(t))*377.2
请注意,t
是指前面定义的全局变量,它是一个numpy数组。我认为您需要重新思考如何定义函数及其参数 - t
是否也应该成为L
的参数?实际上,f
返回包含数组的列表,即使它的第一个参数包含单个元素:
In [10]: f([1], 0)
Out[10]:
[array([ -2.28644086e+10, -2.28638809e+10, -2.28633064e+10, ...,
-1.80290012e+09, -1.80271510e+09, -1.80258446e+09])]
这会导致odeint
中断。