我有一个多变量蒙特卡罗隐马尔可夫问题需要解决:
x[k] = f(x[k-1]) + B u[k]
y[k] = g(x[k])
其中:
x[k] the hidden states (Markov dynamics)
y[k] the observed data
u[k] the stochastic driving process
PyMC3已经足够成熟以解决这个问题,还是应该继续使用2.3版?其次,非常感谢PyMC框架中对HM模型的任何引用。感谢。
- Henk
答案 0 :(得分:2)
我做了与PyMC 2.x类似的事情。我的时间不依赖于时间。这是我的例子。
# we're using `some_tau` for the noise throughout the example.
# this should be replaced with something more meaningful.
some_tau = 1 / .5**2
# PRIORS
# we don't know too much about the velocity, might be pos. or neg.
vel = pm.Normal("vel", mu=0, tau=some_tau)
# MODEL
# next_state = prev_state + vel (and some gaussian noise)
# That means that each state depends on the prev_state and the vel.
# We save the states in a list.
states = [pm.Normal("s0", mu=true_positions[0], tau=some_tau)]
for i in range(1, len(true_positions)):
states.append(pm.Normal(name="s" + str(i),
mu=states[-1] + vel,
tau=some_tau))
# observation with gaussian noise
obs = pm.Normal("obs", mu=states, tau=some_tau, value=true_positions, observed=True)
我猜你需要将你的模型设为RV列表。他们也有一些依赖性。
以下是原始问题: PyMC: Parameter estimation in a Markov system
以下是IPython笔记本的完整示例: http://nbviewer.ipython.org/github/sotte/random_stuff/blob/master/PyMC%20-%20Simple%20Markov%20Chain.ipynb