高效算法在O(log(N))时间内找到排序数组中在一定范围内的整数数量?

时间:2013-11-07 18:34:57

标签: java c algorithm sorting

我遇到了一个必须在O(logn)

中完成的面试问题

给定一个排序的整数数组和一个数字,找到数组中数字的起始和结束索引。

Ex1: Array = {0,0,2,3,3,3,3,4,7,7,9} and Number = 3 --> Output = {3,6} 

Ex2: Array = {0,0,2,3,3,3,3,4,7,7,9} and Number = 5 --> Output = {-1,-1} 

我试图找到一个有效的算法,但是这么胖也没有成功。

6 个答案:

答案 0 :(得分:4)

您可以使用二进制搜索的概念来查找起始和结束索引:

  • 要查找起始索引,请将数组减半,如果值等于或大于输入数,请使用数组的下半部分重复,否则重复上半部分。到达大小为1的数组时停止。
  • 要查找起始索引,请将数组减半,如果值大于输入数,请使用数组的下半部分重复,否则重复上半部分。到达大小为1的数组时停止。

请注意,当我们到达大小为1的数组时,我们可能是输入数字旁边的一个单元格,因此我们检查它是否等于输入数字,如果不是,我们通过从索引中添加/减少1来修复索引我们找到了。

findStartIndex(int[] A, int num)
{
    int start = 0; end = A.length-1;

    while (end != start) 
    {
        mid = (end - start)/2;

        if (A[mid] >= num)
            end = mid;
        else
            start = mid;
    }

    if(A[start] == num) 
        return start;
    else 
        return start+1;
}

findEndIndex(int[] A, int num)
{
    int start = 0; end = A.length-1;

    while (end != start) 
    {
        mid = (end - start)/2;

        if (A[mid] > num)
            end = mid;
        else
            start = mid;
    }

    if(A[start] == num) 
        return start;
    else 
        return start-1;
}

整个程序:

int start = findStartIndex(A, num);

if (A[start]!=num) 
{ 
     print("-1,-1"); 
}
else
{
     int end = findEndIndex(A, num);
     print(start, end);
}

答案 1 :(得分:2)

听起来像二元搜索 - 日志图表iirc表示每个增量“减半”的效果,基本上是二分搜索。

伪代码:

Set number to search for
Get length of array, check if number is at the half point
if the half is > the #, check the half of the bottom half. is <, do the inverse
repeat
    if the half point is the #, mark the first time this happens as a variable storing its index
    then repeat binary searches above , and then binary searches below (separately), such that you check for how far to the left/right it can repeat.
    note*: and you sort binary left/right instead of just incrementally, in case your code is tested in a dataset with like 1,000,000 3's in a row or something

这是否足够清楚了?

答案 2 :(得分:2)

解决方案是在开始时同时二进制搜索数组(实际上不必是并发:P)。关键是左右搜索略有不同。对于右侧,如果遇到欺骗,则必须向右搜索,对于左侧,如果遇到欺骗,则向左搜索。您要搜索的是边界,所以在右侧检查。

 yournum, not_yournum  

这是边界,在左侧,您只需搜索相反方向的边界。最后返回边界的索引。

答案 3 :(得分:0)

双重二分搜索。你从较低的索引= 0开始,较高的索引=长度 - 1.然后你中途检查点并相应地调整你的索引。

诀窍是,一旦找到了目标,枢轴就会分成两个枢轴。

答案 4 :(得分:0)

由于还没有人发布工作代码,我将发布一些(Java):

public class DuplicateNumberRangeFinder {
    public static void main(String[] args) {
        int[] nums = { 0, 0, 2, 3, 3, 3, 3, 4, 7, 7, 9 };
        Range range = findDuplicateNumberRange(nums, 3);

        System.out.println(range);
    }

    public static Range findDuplicateNumberRange(int[] nums, int toFind) {
        Range notFound = new Range(-1, -1);

        if (nums == null || nums.length == 0) {
            return notFound;
        }

        int startIndex = notFound.startIndex;
        int endIndex = notFound.endIndex;
        int n = nums.length;
        int low = 0;
        int high = n - 1;

        while (low <= high) {
            int mid = low + (high - low) / 2;

            if (nums[mid] == toFind && (mid == 0 || nums[mid - 1] < toFind)) {
                startIndex = mid;
                break;
            } else if (nums[mid] < toFind) {
                low = mid + 1;
            } else if (nums[mid] >= toFind) {
                high = mid - 1;
            }
        }

        low = 0;
        high = n - 1;

        while (low <= high) {
            int mid = low + (high - low) / 2;

            if (nums[mid] == toFind && (mid == n - 1 || nums[mid + 1] > toFind)) {
                endIndex = mid;
                break;
            } else if (nums[mid] <= toFind) {
                low = mid + 1;
            } else if (nums[mid] > toFind) {
                high = mid - 1;
            }
        }

        return new Range(startIndex, endIndex);
    }

    private static class Range {
        int startIndex;
        int endIndex;

        public Range(int startIndex, int endIndex) {
            this.startIndex = startIndex;
            this.endIndex = endIndex;
        }

        public String toString() {
            return "[" + this.startIndex + ", " + this.endIndex + "]";
        }
    }
}

答案 5 :(得分:0)

这可能是我的错误,但是当我测试它时,Ron Teller的答案有一个无限循环。这是Java中的一个工作示例,如果您将searchRange函数更改为不是静态的,则可以对其进行测试here

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class RangeInArray {
    // DO NOT MODIFY THE LIST
    public static ArrayList<Integer> searchRange(final List<Integer> a, int b) {
        ArrayList<Integer> range = new ArrayList<>();

        int startIndex = findStartIndex(a, b);

        if(a.get(startIndex) != b) {
            range.add(-1);
            range.add(-1);
            return range;
        }

        range.add(startIndex);
        range.add(findEndIndex(a, b));
        return range;
    }

    public static int findStartIndex(List<Integer> a, int b) {
        int midIndex = 0, lowerBound = 0, upperBound = a.size() - 1;

        while(lowerBound < upperBound) {
            midIndex = (upperBound + lowerBound) / 2;
            if(b <= a.get(midIndex)) upperBound = midIndex - 1;
            else lowerBound = midIndex + 1;
        }

        if(a.get(lowerBound) == b) return lowerBound;
        return lowerBound + 1;
    }

    public static int findEndIndex(List<Integer> a, int b) {
        int midIndex = 0, lowerBound = 0, upperBound = a.size() - 1;

        while(lowerBound < upperBound) {
            midIndex = (upperBound + lowerBound) / 2;
            if(b < a.get(midIndex)) upperBound = midIndex - 1;
            else lowerBound = midIndex + 1;
        }

        if(a.get(lowerBound) == b) return lowerBound;
        return lowerBound - 1;
    }

    public static void main(String[] args) {
        ArrayList<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(1);
        list.add(2);
        list.add(2);
        list.add(2);
        list.add(2);
        list.add(2);
        list.add(2);
        list.add(3);
        list.add(4);
        list.add(4);
        list.add(4);
        list.add(4);
        list.add(5);
        list.add(5);
        list.add(5);
        System.out.println("Calling search range");
        for(int n : searchRange(list, 2)) {
            System.out.print(n + " ");
        }
    }
}