我在Matlab中做了一个朴素的贝叶斯,直到他们说我需要条件概率才一直很好。现在我知道条件p(A | B)= P(A和B)/ p(B)的公式,但是当我有数据从中丢失时。数据是:
1,0,3,0,?,0,2,2,2,1,1,1,1,3,2,2,1,2,2,0,2,2,2,2,1,2,2,2,3,2,1,1,1,3,3,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,1,1,2,2
1,0,3,3,1,0,3,1,3,1,1,1,1,1,3,3,1,2,2,0,0,2,2,2,1,2,1,3,2,3,1,1,1,3,3,2,2,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,2,2,1,2,2
1,0,3,3,2,0,3,3,3,1,1,1,0,3,3,3,1,2,1,0,0,2,2,2,1,2,2,3,2,3,1,3,3,3,1,2,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2
1,0,2,3,2,1,3,3,3,1,2,1,0,3,3,1,1,2,2,0,0,2,2,2,2,1,3,2,3,3,1,3,3,3,1,1,1,1,2,2,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2
1,0,3,2,1,1,3,3,3,2,2,2,1,1,2,2,2,2,2,0,0,2,2,2,1,1,2,3,2,2,1,1,1,3,2,1,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,1,2,2
1,0,3,3,2,0,3,3,3,1,2,2,0,3,3,3,2,2,1,0,0,1,2,2,2,1,3,3,1,2,2,3,3,3,2,1,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2
1,0,3,2,1,0,3,3,3,1,2,1,2,3,3,3,3,2,2,0,0,2,2,2,2,1,3,2,2,2,2,3,3,3,2,1,1,2,2,1,2,1,2,2,2,2,1,2,2,2,2,1,2,2,2,1,2
1,0,2,2,1,0,3,1,3,3,3,3,2,1,3,3,1,2,2,0,0,1,1,2,1,2,1,3,2,1,1,3,3,3,2,2,1,2,1,2,2,1,2,2,2,1,2,2,2,1,2,2,2,2,1,2,2
1,0,3,1,1,0,3,1,3,1,1,1,3,2,3,3,1,2,2,0,0,2,2,2,1,2,1,2,1,1,1,3,3,3,3,2,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,2,2,2,1,2,2
2,0,2,3,2,0,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,3,2,3,3,3,3,3,3,3,3,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,3,2,1,1,2,2
2,0,2,2,0,0,3,2,3,1,1,3,1,3,1,1,2,2,2,0,2,1,1,2,1,1,2,2,2,2,1,3,3,3,1,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
2,0,2,3,2,0,1,2,1,1,2,1,0,1,2,2,1,2,1,0,2,2,2,2,1,2,1,2,2,3,1,3,3,3,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,2,1,1,2,2,1
2,0,2,1,1,0,1,2,2,1,2,1,1,2,2,2,1,2,2,0,2,2,2,2,1,2,1,3,2,2,1,1,1,1,1,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2
2,0,2,2,1,1,2,3,3,1,1,1,1,2,2,2,1,2,2,0,1,2,2,2,1,2,1,2,2,2,1,1,1,3,2,1,1,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,1,1,1,2,2
2,1,3,0,?,1,1,2,2,1,1,1,1,2,1,1,1,2,2,0,2,2,2,2,1,2,2,2,2,2,3,3,3,3,1,1,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,1,2,1
2,0,3,2,2,1,2,2,2,1,1,2,1,2,3,3,2,2,2,0,1,2,2,2,1,2,3,2,2,1,2,2,2,3,1,3,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2
2,0,3,2,2,0,1,1,3,1,1,1,0,1,3,3,1,2,2,0,2,2,2,2,1,1,2,2,2,2,1,3,3,3,3,3,1,2,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2
2,0,2,1,1,0,2,1,3,1,1,1,0,3,1,3,1,2,2,0,0,1,2,2,3,3,3,2,2,2,1,3,3,3,1,1,1,2,1,2,2,2,1,2,1,2,2,2,2,2,2,2,1,1,1,2,2
2,0,2,0,?,0,2,3,3,3,2,1,0,2,2,1,1,1,2,0,0,2,1,2,1,2,3,2,2,3,1,3,3,3,2,1,1,2,1,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,1,2
2,0,1,2,1,0,3,3,3,1,2,2,1,1,3,3,1,2,2,0,0,2,2,2,1,2,1,3,2,3,1,1,1,3,1,1,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,1,1,2,2,1
2,0,2,0,?,1,3,3,3,1,2,1,1,3,3,3,1,2,2,0,0,2,2,2,2,1,1,2,3,2,1,1,1,3,1,3,1,1,2,2,2,1,2,2,1,2,2,2,2,2,2,1,2,2,1,2,2
2,0,3,3,2,0,2,1,3,1,1,3,3,3,3,3,1,2,2,0,0,2,2,1,1,2,2,3,3,3,3,3,3,3,2,2,2,1,2,1,2,1,2,2,2,2,2,2,2,1,2,2,2,2,2,1,2
3,0,2,3,1,1,2,2,1,1,1,1,1,1,2,2,1,2,2,2,2,1,2,1,1,1,1,2,2,3,1,3,3,3,1,1,1,3,1,3,3,3,3,3,3,3,3,3,3,3,3,1,3,3,2,2,1
3,0,2,3,1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,1,2,1,2,1,1,2,2,2,2,2,1,3,3,3,2,2,2,3,3,1,1,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,1
3,0,3,3,1,0,3,3,1,1,1,2,1,1,2,2,2,2,2,2,2,1,1,1,1,1,2,2,2,2,3,3,3,3,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,1
3,0,2,3,2,0,1,2,2,1,2,1,2,1,1,1,2,1,2,2,1,2,1,2,2,1,3,2,1,1,2,2,2,2,1,1,2,2,?,2,1,1,1,2,2,2,1,2,2,2,1,3,1,2,2,1,2
3,0,2,2,2,0,2,1,2,1,1,1,0,2,2,3,1,2,2,2,2,2,2,2,3,3,3,2,2,1,2,2,2,2,3,1,2,2,2,2,1,2,1,1,2,2,1,2,2,2,2,2,2,2,1,2,1
3,0,2,2,1,0,2,2,2,1,1,2,0,2,2,2,1,2,2,2,2,2,2,2,1,2,1,3,3,3,1,3,3,2,2,3,1,2,1,3,2,2,3,2,2,2,3,3,3,2,2,3,2,2,2,2,1
3,0,3,2,2,0,2,2,2,1,1,2,0,2,2,2,1,2,2,2,2,2,2,1,1,2,2,2,2,2,2,1,1,1,2,1,1,3,1,3,3,3,2,3,2,2,2,2,2,2,3,1,2,2,2,2,2
3,0,2,1,1,0,2,2,1,1,1,1,0,1,1,1,2,1,2,0,2,1,1,1,1,1,2,2,1,2,1,3,3,3,1,1,3,3,3,2,3,1,2,2,3,3,2,2,2,3,2,2,2,2,2,2,1
3,0,2,3,2,1,2,2,3,1,1,2,1,2,2,2,1,2,2,0,2,2,2,1,1,2,2,2,2,2,1,2,2,3,2,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2
3,0,2,3,1,0,2,3,3,1,1,1,1,2,2,2,1,2,2,0,2,2,2,2,1,2,1,2,2,2,1,1,1,1,1,2,2,1,2,2,2,1,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2
哪些类在1到3的第一列?我将它们更改为列的平均值,类的优先级可以通过计算为第一列的类#/总数来完成。这很简单,但有条件吗?
---class--- / / \ \ x1 x2...x_i xn
贝叶斯p(c | x)= p(x | c)p(c)/ p(x)。感谢。
编辑:我认为我需要的是,有人可以解释从数据中获取条件的过程,如果可能的话,如果我需要做CPT并给我指示如何做,我就是苹果,我是一个程序员大多数。答案 0 :(得分:4)
这是一个强力代码。只是为了确定我们正在谈论同样的问题。
% 1º step: Write the 32-by-56 matrix (excluding column of classes),
% replacing "?" with nans. Name it "data".
% Check the values in data:
unique(data(~isnan(data)))
% These are 0, 1, 2 and 3
% 2º step: Find mean of each variable without considering the NaN values
data_mean = nanmean(data);
% 3º step: replace missing values with class sample mean
data_new = data;
for hh = 1:56
inds = isnan(data(:, hh));
data_new(inds, hh) = data_mean(hh);
end
% Only NaN values have been replaced:
find(isnan(data(:))) % indices of NaN values in data
find(data_new(:) ~= data(:)) % indices of data_new different from data
% 4º step: compute probabilities of outcome conditional to each class
n = [0, 9, 22, 32]; % indices for classes
probs = zeros(56, 3, 4);
for hh = 1:56 % for each variable
for ii = 1:3 % for each class
inds = (n(ii)+1):n(ii+1);
for jj = 1:4 % for each outcome
probs(hh, ii, jj) = sum(data(inds, hh) == jj-1);
end
end
end
% The conditional probability of the outcome conditional to the class, for
% the first variable is
squeeze(probs(1, :, :))