我找不到具有纹理坐标的THREE.BufferGeometry示例。它应该用于纹理网格吗?我无法让它发挥作用。这是我的测试代码:
var quad_vertices =
[
-30.0, 30.0, 0.0,
30.0, 30.0, 0.0,
30.0, -30.0, 0.0,
-30.0, -30.0, 0.0
];
var quad_uvs =
[
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0
];
var quad_indices =
[
0, 2, 1, 0, 3, 2
];
var geometry = new THREE.BufferGeometry();
geometry.attributes =
{
position:
{
itemSize: 3,
array: new Float32Array(3 * 4)
},
uv:
{
itemSize: 2,
array: new Float32Array(2 * 4)
},
index:
{
itemSize: 1,
array: new Uint16Array(6)
}
};
var positions = geometry.attributes.position.array;
var uvs = geometry.attributes.uv.array;
var indices = geometry.attributes.index.array;
var i;
for(i = 0; i < positions.length; i += 3)
{
positions[i] = quad_vertices[i];
positions[i + 1] = quad_vertices[i + 1];
positions[i + 2] = quad_vertices[i + 2];
}
for(i = 0; i < uvs.length; i += 2)
{
uvs[i] = quad_uvs[i];
uvs[i + 1] = quad_uvs[i + 1];
}
for(i = 0; i < indices.length; i++)
indices[i] = quad_indices[i];
var texture = THREE.ImageUtils.loadTexture('./assets/texture.png');
texture.anisotropy = renderer.getMaxAnisotropy();
var material = new THREE.MeshBasicMaterial( { map: texture } );
var mesh = new THREE.Mesh(geometry, material);
mesh.position.z = -100;
scene.add(mesh);
只需使用THREE.Geometry创建网格即可,所以我不知道这段代码有什么问题。有什么想法吗?
答案 0 :(得分:6)
以下是带有uvs的索引BufferGeometry的工作示例。我更新了你的例子以使用three.js r83。我看到旧代码有两个问题。首先,您不能将geometry.attributes设置为等于JSON对象定义。 THREE.BufferAttribute是一个类,但是你的JSON缺少THREE.Renderer所需的原型函数定义。第二个THREE.ImageUtils已被THREE.TextureLoader取代,所以我也在示例中更新了它。
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera( 75, window.innerWidth/window.innerHeight, 0.1, 1000 );
var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
var quad_vertices =
[
-30.0, 30.0, 0.0,
30.0, 30.0, 0.0,
30.0, -30.0, 0.0,
-30.0, -30.0, 0.0
];
var quad_uvs =
[
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0
];
var quad_indices =
[
0, 2, 1, 0, 3, 2
];
var geometry = new THREE.BufferGeometry();
var vertices = new Float32Array( quad_vertices );
// Each vertex has one uv coordinate for texture mapping
var uvs = new Float32Array( quad_uvs);
// Use the four vertices to draw the two triangles that make up the square.
var indices = new Uint32Array( quad_indices )
// itemSize = 3 because there are 3 values (components) per vertex
geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'uv', new THREE.BufferAttribute( uvs, 2 ) );
geometry.setIndex( new THREE.BufferAttribute( indices, 1 ) );
// Load the texture asynchronously
var textureLoader = new THREE.TextureLoader();
textureLoader.load('./assets/texture.jpg', function (texture){
console.log('texture loaded');
var material = new THREE.MeshBasicMaterial( {map: texture });
var mesh = new THREE.Mesh( geometry, material );
mesh.position.z = -100;
scene.add(mesh);
renderer.render(scene, camera);
}, undefined, function (err) {
console.error('texture not loaded', err)
});
供进一步参考:
答案 1 :(得分:1)
对于那些希望将索引缓冲区几何与纹理和自定义着色器材质相结合的人(我相信这接近性能的上限),我使用了以下方法。所有实际工作都发生在loadImage()
和顶点和片段着色器中,其余的只是设置Three.js(版本92)的样板:
/**
* Generate a scene object with a background color
**/
function getScene() {
var scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
return scene;
}
/**
* Generate the camera to be used in the scene. Camera args:
* [0] field of view: identifies the portion of the scene
* visible at any time (in degrees)
* [1] aspect ratio: identifies the aspect ratio of the
* scene in width/height
* [2] near clipping plane: objects closer than the near
* clipping plane are culled from the scene
* [3] far clipping plane: objects farther than the far
* clipping plane are culled from the scene
**/
function getCamera() {
var aspectRatio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspectRatio, 0.1, 1000);
camera.position.set(0, 1, 10);
return camera;
}
/**
* Generate the renderer to be used in the scene
**/
function getRenderer() {
// Create the canvas with a renderer
var renderer = new THREE.WebGLRenderer({antialias: true});
// Add support for retina displays
renderer.setPixelRatio(window.devicePixelRatio);
// Specify the size of the canvas
renderer.setSize(window.innerWidth, window.innerHeight);
// Add the canvas to the DOM
document.body.appendChild(renderer.domElement);
return renderer;
}
/**
* Generate the controls to be used in the scene
* @param {obj} camera: the three.js camera for the scene
* @param {obj} renderer: the three.js renderer for the scene
**/
function getControls(camera, renderer) {
var controls = new THREE.TrackballControls(camera, renderer.domElement);
controls.zoomSpeed = 0.4;
controls.panSpeed = 0.4;
return controls;
}
/**
* Load image
**/
function loadImage() {
var geometry = new THREE.BufferGeometry();
/*
Now we need to push some vertices into that geometry to identify the coordinates the geometry should cover
*/
// Identify the image size
var imageSize = {width: 10, height: 7.5};
// Identify the x, y, z coords where the image should be placed
var coords = {x: -5, y: -3.75, z: 0};
// Add one vertex for each corner of the image, using the
// following order: lower left, lower right, upper right, upper left
var vertices = new Float32Array([
coords.x, coords.y, coords.z, // bottom left
coords.x+imageSize.width, coords.y, coords.z, // bottom right
coords.x+imageSize.width, coords.y+imageSize.height, coords.z, // upper right
coords.x, coords.y+imageSize.height, coords.z, // upper left
])
// set the uvs for this box; these identify the following corners:
// lower-left, lower-right, upper-right, upper-left
var uvs = new Float32Array([
0.0, 0.0,
1.0, 0.0,
1.0, 1.0,
0.0, 1.0,
])
// indices = sequence of index positions in `vertices` to use as vertices
// we make two triangles but only use 4 distinct vertices in the object
// the second argument to THREE.BufferAttribute is the number of elements
// in the first argument per vertex
geometry.setIndex([0,1,2, 2,3,0])
geometry.addAttribute('position', new THREE.BufferAttribute( vertices, 3 ));
geometry.addAttribute('uv', new THREE.BufferAttribute( uvs, 2) )
// Create a texture loader so we can load our image file
var loader = new THREE.TextureLoader();
// specify the url to the texture
var url = 'https://s3.amazonaws.com/duhaime/blog/tsne-webgl/assets/cat.jpg';
// specify custom uniforms and attributes for shaders
// Uniform types: https://github.com/mrdoob/three.js/wiki/Uniforms-types
var material = new THREE.ShaderMaterial({
uniforms: {
texture: {
type: 't',
value: loader.load(url)
},
},
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
// Combine our image geometry and material into a mesh
var mesh = new THREE.Mesh(geometry, material);
// Set the position of the image mesh in the x,y,z dimensions
mesh.position.set(0,0,0)
// Add the image to the scene
scene.add(mesh);
}
/**
* Render!
**/
function render() {
requestAnimationFrame(render);
renderer.render(scene, camera);
controls.update();
};
var scene = getScene();
var camera = getCamera();
var renderer = getRenderer();
var controls = getControls(camera, renderer);
loadImage();
render();
html, body { width: 100%; height: 100%; background: #000; }
body { margin: 0; overflow: hidden; }
canvas { width: 100%; height: 100%; }
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/92/three.min.js"></script>
<script src="https://threejs.org/examples/js/controls/TrackballControls.js"></script>
<script type='x-shader/x-vertex' id='vertex-shader'>
/**
* The vertex shader's main() function must define `gl_Position`,
* which describes the position of each vertex in the space.
*
* To do so, we can use the following variables defined by Three.js:
*
* uniform mat4 modelViewMatrix - combines:
* model matrix: maps a point's local coordinate space into world space
* view matrix: maps world space into camera space
*
* uniform mat4 projectionMatrix - maps camera space into screen space
*
* attribute vec3 position - sets the position of each vertex
*
* attribute vec2 uv - determines the relationship between vertices and textures
*
* `uniforms` are constant across all vertices
*
* `attributes` can vary from vertex to vertex and are defined as arrays
* with length equal to the number of vertices. Each index in the array
* is an attribute for the corresponding vertex
*
* `varyings` are values passed from the vertex to the fragment shader
**/
varying vec2 vUv; // pass the uv coordinates of each pixel to the frag shader
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script type='x-shader/x-fragment' id='fragment-shader'>
/**
* The fragment shader's main() function must define `gl_FragColor`,
* which describes the pixel color of each pixel on the screen.
*
* To do so, we can use uniforms passed into the shader and varyings
* passed from the vertex shader
**/
precision highp float; // set float precision (optional)
uniform sampler2D texture; // identify the texture as a uniform argument
varying vec2 vUv; // identify the uv values as a varying attribute
void main() {
gl_FragColor = texture2D(texture, vUv);
}
</script>