我目前正在使用Python中的OpenCV来校正航拍图像中的图像失真。我有滚动,俯仰和偏航的数据。我知道我需要创建一个扭曲矩阵,并将矩阵应用到我的原始坐标点以创建图像的输出点。我能够影响图像的移动方式,但我觉得有一个错误,因为唯一的值似乎适用于非常小的值。
这是我目前的代码:
warp_mat = np.array([[math.cos(theta)*math.cos(psy), math.cos(phi)*math.sin(psy)+math.sin(phi)*math.sin(theta)*math.cos(psy), math.sin(phi)*math.sin(psy)-math.cos(phi)*math.sin(theta)*math.cos(psy)],\
[-1*math.cos(theta)*math.sin(psy), math.cos(phi)*math.cos(psy)-math.sin(phi)*math.sin(theta)*math.sin(psy), math.sin(phi)*math.cos(psy)+math.cos(phi)*math.sin(theta)*math.sin(psy)],\
[math.sin(theta), -1*math.sin(phi)*math.cos(theta), math.cos(phi)*math.cos(theta)]], dtype='float32')
srcPts = np.array([[-2064, 1161, 1],\
[2064, 1161, 1],\
[2064, -1161, 1],\
[-2064, -1161, 1]], dtype='float32')
dstPts = np.empty(shape = (4,3), dtype='float32')
dstPts[0][0] = srcPts[0][0] * warp_mat[0][0] + srcPts[0][1] * warp_mat[1][0] + srcPts[0][2] * warp_mat[2][0];
dstPts[0][1] = srcPts[0][0] * warp_mat[0][1] + srcPts[0][1] * warp_mat[1][1] + srcPts[0][2] * warp_mat[2][1];
dstPts[0][2] = srcPts[0][0] * warp_mat[0][2] + srcPts[0][1] * warp_mat[1][2] + srcPts[0][2] * warp_mat[2][2];
dstPts[1][0] = srcPts[1][0] * warp_mat[0][0] + srcPts[1][1] * warp_mat[1][0] + srcPts[1][2] * warp_mat[2][0];
dstPts[1][1] = srcPts[1][0] * warp_mat[0][1] + srcPts[1][1] * warp_mat[1][1] + srcPts[1][2] * warp_mat[2][1];
dstPts[1][2] = srcPts[1][0] * warp_mat[0][2] + srcPts[1][1] * warp_mat[1][2] + srcPts[1][2] * warp_mat[2][2];
dstPts[2][0] = srcPts[2][0] * warp_mat[0][0] + srcPts[2][1] * warp_mat[1][0] + srcPts[2][2] * warp_mat[2][0];
dstPts[2][1] = srcPts[2][0] * warp_mat[0][1] + srcPts[2][1] * warp_mat[1][1] + srcPts[2][2] * warp_mat[2][1];
dstPts[2][2] = srcPts[2][0] * warp_mat[0][2] + srcPts[2][1] * warp_mat[1][2] + srcPts[2][2] * warp_mat[2][2];
dstPts[3][0] = srcPts[3][0] * warp_mat[0][0] + srcPts[3][1] * warp_mat[1][0] + srcPts[3][2] * warp_mat[2][0];
dstPts[3][1] = srcPts[3][0] * warp_mat[0][1] + srcPts[3][1] * warp_mat[1][1] + srcPts[3][2] * warp_mat[2][1];
dstPts[3][2] = srcPts[3][0] * warp_mat[0][2] + srcPts[3][1] * warp_mat[1][2] + srcPts[3][2] * warp_mat[2][2];
dstPts[0][0] = dstPts[0][0] / dstPts[0][2];
dstPts[0][1] = dstPts[0][1] / dstPts[0][2];
dstPts[0][2] = dstPts[0][2] / dstPts[0][2];
dstPts[1][0] = dstPts[1][0] / dstPts[1][2];
dstPts[1][1] = dstPts[1][1] / dstPts[1][2];
dstPts[1][2] = dstPts[1][2] / dstPts[1][2];
dstPts[2][0] = dstPts[2][0] / dstPts[2][2];
dstPts[2][1] = dstPts[2][1] / dstPts[2][2];
dstPts[2][2] = dstPts[2][2] / dstPts[2][2];
dstPts[3][0] = dstPts[3][0] / dstPts[3][2];
dstPts[3][1] = dstPts[3][1] / dstPts[3][2];
dstPts[3][2] = dstPts[3][2] / dstPts[3][2];
srcPts2 = np.array([[srcPts[0][0],srcPts[0][1]],\
[srcPts[1][0],srcPts[1][1]],\
[srcPts[2][0],srcPts[2][1]],\
[srcPts[3][0],srcPts[3][1]]], dtype='float32')
dstPts2 = np.array([[dstPts[0][0],dstPts[0][1]],\
[dstPts[1][0],dstPts[1][1]],\
[dstPts[2][0],dstPts[2][1]],\
[dstPts[3][0],dstPts[3][1]]], dtype='float32')
transMatrix = cv.getPerspectiveTransform(srcPts2, dstPts2)
dst = cv.warpPerspective(imgFile,transMatrix,(4128,2322) ,borderMode = cv.BORDER_CONSTANT,borderValue = 0)
答案 0 :(得分:0)
在代码的开头,您通过投影四个点来计算扭曲矩阵,然后使用getPerspectiveTransform()来找出变换矩阵。这应该有效,但它比必要的更复杂。如果您知道滚动角,俯仰角和偏航角,则可以直接计算变换矩阵。看看http://image2measure.net/files/calib3Dto2D.cpp中的BirdsEyeView()函数。它正是如此。
我不得不换线
Mat R = RX * RY * RZ;
到
Mat R = RZ * RX * RY;
为了使转型正确。
f 是以像素为单位的焦距
如果 rh 是图像的水平分辨率,哦是相机的水平开启角度
f =(rh / 2)/ tan(oh / 2)
如果您不想缩放图像,请为距离选择相同的值,比 f 更大的图像放大图像,或选择较小的图像缩小图像。
答案 1 :(得分:0)
代码BirdsEyeView()适合我,但我不知道为什么交换Roll和Pitch角度。当我改变" alpha"时,图像会在音高上扭曲,当我改变" beta"翘曲的图像。所以,我改变了我的旋转矩阵,如下所示。
此外,RY有信号错误。您可以在以下位置查看Ry:http://en.wikipedia.org/wiki/Rotation_matrix 我认为这就是为什么Adrian将乘法顺序从R = RX * RY * RZ改为R = RZ * RX * RY的原因。
我使用的旋转矩阵:
Mat RX = (Mat_<double>(4, 4) <<
1, 0, 0, 0,
0, cos(beta), -sin(beta), 0,
0, sin(beta), cos(beta), 0,
0, 0, 0, 1);
Mat RY = (Mat_<double>(4, 4) <<
cos(alpha), 0, sin(alpha), 0,
0, 1, 0, 0,
-sin(alpha), 0, cos(alpha), 0,
0, 0, 0, 1);
Mat RZ = (Mat_<double>(4, 4) <<
cos(gamma), -sin(gamma), 0, 0,
sin(gamma), cos(gamma), 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
此致