为什么在Hive中计数(明显)慢于group by?

时间:2013-10-11 05:56:41

标签: performance hive aggregate-functions

在Hive上,我认为数量(明显)将比分组更有可能导致减速器的工作量不平衡,并最终导致一个悲伤的减速器消失。下面的示例查询。

为什么?

示例查询:

select count(distinct user)
from some_table

具有分组的版本(建议更快):

select count(*) from
(select user
 from some_table
 group by user) q

注意:this presentation的幻灯片26描述了问题。

1 个答案:

答案 0 :(得分:20)

select count(distinct user)
from some_table;

此查询在地图方面进行计数。每个映射器都会发出一个值,即计数。然后必须聚合所有值以产生总计数,这是一个减速器的工作。

select count(*) from
(select user
 from some_table
 group by user) q;

此查询有两个阶段。在阶段1,GROUP BY聚合地图侧的用户并为每个用户发出一个值。输出必须在缩减方面聚合,但它可以使用许多缩减器。在第2阶段,在地图一侧执行COUNT,然后使用一个减速器聚合最终结果。

因此,如果您有大量的地图侧分割,那么第一个查询将必须聚合非常大量的一个值结果。第二个查询可以在阶段1的缩减侧使用许多减速器,然后在阶段2,对于最后的单个减速器将具有较小的任务。

这通常不是优化。您必须有大量的地图拆分才能使查询1 reducer成为问题。第二个查询有两个阶段,仅此一个将比查询1慢(阶段2在第1阶段完全完成之前无法启动)。因此,虽然我可以看到一些推理,但我会怀疑,除非进行适当的测量并显示出改进。