我需要将数据存储在类似3D的结构中,但是我一直依靠Eigen库来处理代码中的矩阵结构,而Eigen不提供3D矩阵。我找到了两种可能的解决方法:
int x,y,z;
Eigen::Matrix<Eigen::Matrix<double,Dynamic,Dynamic>, Dynamic,1> M(z);
for (int i = 0; i < M.rows(); ++i) M(i)=MatrixXd::Zero(x,y);
// access coefficients with M(z)(x,y)
和
int x,y,z;
std::vector<Eigen::Matrix<double,Dynamic,Dynamic> > M(z);
for (int i = 0; i < M.rows(); ++i) M[i]=MatrixXd::Zero(x,y);
// access coefficients with M[z](x,y)
我的问题是:使用这两种方法有什么速度/效率优势,还是等效?
答案 0 :(得分:0)
试试这段代码:
#include<windows.h>
LARGE_INTEGER startTime, stopTime;
LARGE_INTEGER freq;
int main(int argc, char *argv[])
{
QueryPerformanceFrequency(&freq);
// ACCESS TIME 1
QueryPerformanceCounter(&startTime);
int x1,y1,z1;
Eigen::Matrix<Eigen::Matrix<double,Dynamic,Dynamic>, Dynamic,1> M1(z1);
for (int i = 0; i < M1.rows(); ++i) M1(i)=MatrixXd::Zero(x1,y1);
QueryPerformanceCounter(&stopTime);
double msecs1= (double)(stopTime.QuadPart - startTime.QuadPart) / (double)freq.QuadPart;
// ACCESS TIME 2
QueryPerformanceCounter(&startTime);
int x2,y2,z2;
std::vector<Eigen::Matrix<double,Dynamic,Dynamic> > M2(z2);
for (int i = 0; i < M2.rows(); ++i) M2[i]=MatrixXd::Zero(x2,y2);
QueryPerformanceCounter(&stopTime);
double msecs2= (double)(stopTime.QuadPart - startTime.QuadPart) / (double)freq.QuadPart;
// RESULT
cout<<"t1="<<msecs1<<", t2="<<msecs2;
}