我正在研究一个问题,即涉及分布在球体表面上的点的Voronoi曲面细分。据我所知,我的蛮力方法有效,因为从视觉上看,它似乎找到了分数的Delaunay三角剖分。但是,使用顶点定义每个面的边缘顺序时,我的算法似乎失败了。
作为我正在寻找的一个例子,这里是一个版本的图片,该版本使用通过确定两个顶点是否共享多个形成点来确定边缘的黑客正确地确定边缘。请注意,我想使用曲面细分来计算面的立体角并为OpenGL等3D渲染API生成几何体,所以这个hack不够好。
红色圆圈是分布在球体表面上的点。黄线表示这些点的Delaunay三角剖分,绿线表示哪些点用于定义Voronoi单元之间的顶点,黑线表示由顶点形成的边缘。通过将不靠近点或线的每个像素设置为通过将单元的定义点变换为颜色而确定的颜色来着色每个单元;这与曲面细分过程分开执行。可能需要使用工具来比较面部颜色值,但可以显示面部被面部正确包围。这似乎表明我的代码正确地确定了Delaunay三角剖分和Voronoi镶嵌的顶点。
当我删除hack并使用我为逆时针方向订购面部点而编写的函数时,我得到了无法解释的结果。请注意,我程序的每次运行都会生成一组不同的随机点,因此这两个图表并不代表相同的点分布。
我在脸上画了红框,证明了这个问题。请注意,这些单元格的黑色线条贯穿其中,并且可能导致某些边缘根本无法显示(请参阅右下方的框)。
我正在使用this StackOverflow question中描述的算法来确定点的逆时针顺序。我使用相同的函数来确定单元格周围的顶点顺序,并确定三个点的外心。如果代码中存在错误,则会发现代码在三点情况下失败,从而引入了Delaunay曲面细分问题(因为顺序中的错误会导致将外心放置在相反的一侧)但是,几十次运行从未坠毁,也没有发现Delaunay镶嵌的任何缺陷。几个小时我一直在与我的代码搏斗,我找不到问题。 有人能看出为什么会出现这个问题吗?
以下是代码的总结列表,我希望列出所有重点。它是我编写的多个文件的代码混合物,试图让某些东西工作;在我的算法工作之前,我倾向于不尝试清理代码。如果不使用,我也没有放入包含或必需的接口方法实现。
public class SphericalVoronoiTessellation {
private Map<Point, List<Point>> faces = new HashMap<>();
private Set<Pair<Point, Point>> edges = new HashSet<>();
private Set<Pair<Point, Point>> neighbors = new HashSet<>();
private Map<Point, Set<Point>> vertices = new HashMap<>();
public SphericalVoronoiTessellation(List<Point> points) {
List<Point> copy = new ArrayList<>(points);
Collections.sort(copy);
for (Point p : copy) {
faces.put(p, new ArrayList<Point>());
}
final int n = points.size();
for (int i = 0; i < n - 2; i++) {
Point p = copy.get(i);
for (int j = i + 1; j < n - 1; j++) {
Point q = copy.get(j);
for (int k = j + 1; k < n; k++) {
Point r = copy.get(k);
Point c = getCircumcenter(p, q, r);
double d = p.getSphericalDistanceTo(c);
if (circleIsEmpty(c, d, i, j, k, copy)) {
faces.get(p).add(c);
faces.get(q).add(c);
faces.get(r).add(c);
neighbors.add(pair(p, q));
neighbors.add(pair(p, r));
neighbors.add(pair(q, r));
Set<Point> formedBy;
if (!vertices.containsKey(c)) {
formedBy = new HashSet<>();
vertices.put(c, formedBy);
} else {
formedBy = vertices.get(c);
}
formedBy.add(p);
formedBy.add(q);
formedBy.add(r);
}
}
}
}
// TODO: Determine why using getCounterClockwiseOrder does not correctly
// order the vertices. It seems to correctly order three vertices
// every time, but that might just be luck...
for (Map.Entry<Point, List<Point>> face : faces.entrySet()) {
List<Point> vertices = getCounterClockwiseOrder(face.getValue());
// Store the vertices in the counter-clockwise order so that they
// can be used to determine the face's surface.
faces.put(face.getKey(), vertices);
// Builds a set of edges for the whole diagram. I use this set for
// duplicate-free testing of the edges on the diagram.
for (int k = 0; k < vertices.size(); k++) {
Point a = vertices.get(k);
Point b = vertices.get(k + 1 == vertices.size() ? 0 : k + 1);
edges.add(pair(a, b));
}
}
}
private static Point getCircumcenter(Point a, Point b, Point c) {
List<Point> ccw = new ArrayList<Point>();
ccw.add(a);
ccw.add(b);
ccw.add(c);
ccw = getCounterClockwiseOrder(ccw);
return
getPlaneNormal(
ccw.get(2),
ccw.get(1),
ccw.get(0)
).times(a.getRadius());
}
// This function is the one that may be broken...
private static List<Point> getCounterClockwiseOrder(List<Point> points) {
List<Point> ordered = new ArrayList<Point>(points);
final Point c = getCentroid(points);
final Point n = c.getNormalized();
final Point s = points.get(0);
final Point toS = s.minusCartesian(c);
Collections.sort(
ordered,
new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
if (o1.equals(o2)) {
return 0;
} else {
return Double.compare(
getDistanceFromS(o1),
getDistanceFromS(o2)
);
}
}
private double getDistanceFromS(Point p) {
if (s.equals(p)) {
return 0;
}
double distance = s.getSphericalDistanceTo(p);
Point toP = p.minusCartesian(c);
Point cross = toS.cross(toP);
if (n.dot(cross) < 0) {
distance = RotationDisplacement.REVOLUTION - distance;
}
return distance;
}
}
);
return ordered;
}
private static Point getCentroid(List<Point> points) {
Point centroid = Point.ORIGIN;
for (Point p : points) {
centroid = centroid.plus(p);
}
return centroid.times(1. / points.size());
}
private static Point getPlaneNormal(Point a, Point b, Point c) {
Point d = a.minusCartesian(b);
Point e = c.minusCartesian(b);
return d.cross(e).getNormalized();
}
private static boolean circleIsEmpty(
Point center,
double distance,
int i,
int j,
int k,
List<Point> points
) {
int m = 0;
for (; m < points.size(); m++) {
if (m == i || m == j || m == k) {
continue;
}
if (center.getSphericalDistanceTo(points.get(m)) < distance) {
break;
}
}
return m == points.size();
}
private static Pair<Point, Point> pair(Point a, Point b) {
if (b.compareTo(a) < 0) {
Point swap = b;
b = a;
a = swap;
}
return new ImmutablePair<Point, Point>(a, b);
}
}
public class Point implements Comparable<Point> {
private double radius;
private RotationDisplacement spherical;
private VectorDisplacement cartesian;
public Point(VectorDisplacement coordinates) {
this.cartesian = coordinates;
this.calculateSpherical();
}
public Point(double radius, RotationDisplacement rotations) {
this.radius = Math.abs(radius);
if (radius < 0) {
rotations = rotations.getNormalizedRepresentation();
rotations = new RotationDisplacement(
Math.PI - rotations.getColatitude(),
rotations.getLongitude() + Math.PI
);
}
this.spherical = rotations.getNormalizedRepresentation();
this.calculateCartesian();
}
private void calculateSpherical() {
this.radius = Math.sqrt(
this.getX() * this.getX() +
this.getY() * this.getY() +
this.getZ() * this.getZ()
);
double c =
this.radius > 0 ?
Math.acos(this.getY() / this.radius) :
0;
double l =
c > 0 && c < Math.PI ?
Math.atan2(-this.getZ(), this.getX()) :
0;
this.spherical =
new RotationDisplacement(
c,
l
).getNormalizedRepresentation();
}
public double getX() {
return this.cartesian.getX();
}
public double getY() {
return this.cartesian.getY();
}
public double getZ() {
return this.cartesian.getZ();
}
private void calculateCartesian() {
this.cartesian = new VectorDisplacement(
this.radius * Math.cos(
this.getLongitude()) * Math.sin(this.getColatitude()
),
this.radius * Math.cos(this.getColatitude()),
this.radius * -Math.sin(
this.getLongitude()) * Math.sin(this.getColatitude()
)
);
}
public double getLongitude() {
return this.spherical.getLongitude();
}
public double getColatitude() {
return this.spherical.getColatitude();
}
public Point plus(Point that) {
return new Point(
(VectorDisplacement) this.cartesian.add(that.cartesian)
);
}
public Point times(double scalar) {
return new Point(this.radius * scalar, this.spherical);
}
public Point getNormalized() {
return new Point(1, this.spherical);
}
public Point minusCartesian(Point that) {
return new Point(
(VectorDisplacement) this.cartesian.subtract(that.cartesian)
);
}
public double getSphericalDistanceTo(Point that) {
if (this.radius == 0 || that.radius == 0) {
return 0;
}
return this.radius * Math.abs(
Math.acos(this.dot(that) / (this.radius * that.radius))
);
}
public double dot(Point that) {
return
this.getX() * that.getX() +
this.getY() * that.getY() +
this.getZ() * that.getZ();
}
@Override
public boolean equals(Object other) {
if (!(other instanceof Point)) {
return false;
}
Point that = (Point) other;
return
this.cartesian.equals(that.cartesian) ||
this.radius == that.radius &&
this.spherical.equals(that.spherical);
}
public Point cross(Point that) {
double ux = this.getX();
double uy = this.getY();
double uz = this.getZ();
double vx = that.getX();
double vy = that.getY();
double vz = that.getZ();
return new Point(
new VectorDisplacement(
uy * vz - uz * vy,
uz * vx - ux * vz,
ux * vy - uy * vx
)
);
}
}
public interface Displacement {
public Displacement add(Displacement that);
public Displacement subtract(Displacement that);
public Displacement scale(double coefficient);
}
public class VectorDisplacement implements Displacement {
private double x;
private double y;
private double z;
public VectorDisplacement(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
@Override
public Displacement add(Displacement that) {
if (!(that instanceof VectorDisplacement)) {
throw new IllegalArgumentException(
"VectorDisplacement.add needs a VectorDisplacement"
);
}
VectorDisplacement other = (VectorDisplacement) that;
return new VectorDisplacement(
this.x + other.x,
this.y + other.y,
this.z + other.z
);
}
@Override
public boolean equals(Object other) {
if (!(other instanceof VectorDisplacement)) {
return false;
}
VectorDisplacement that = (VectorDisplacement) other;
return this.x == that.x && this.y == that.y && this.z == that.z;
}
@Override
public Displacement subtract(Displacement that) {
if (!(that instanceof VectorDisplacement)) {
throw new IllegalArgumentException(
"VectorDisplacement.subtract needs a VectorDisplacement"
);
}
VectorDisplacement other = (VectorDisplacement) that;
return new VectorDisplacement(
this.x - other.x,
this.y - other.y,
this.z - other.z
);
}
}
public class RotationDisplacement implements Displacement {
public static double REVOLUTION = Math.PI * 2;
private double colatitude;
private double longitude;
public RotationDisplacement(double colatitude, double longitude) {
this.colatitude = colatitude;
this.longitude = longitude;
}
public double getColatitude() {
return this.colatitude;
}
public double getLongitude() {
return this.longitude;
}
public RotationDisplacement getNormalizedRepresentation() {
double c = clampAngle(colatitude);
double l = 0;
if (c != 0 && c != Math.PI) {
if (c > Math.PI) {
c = RotationDisplacement.REVOLUTION - c;
l = Math.PI;
}
l = clampAngle(longitude + l);
}
return new RotationDisplacement(c, l);
}
@Override
public boolean equals(Object other) {
if (!(other instanceof RotationDisplacement)) {
return false;
}
RotationDisplacement my = this.getNormalizedRepresentation();
RotationDisplacement his =
((RotationDisplacement) other).getNormalizedRepresentation();
return
my.colatitude == his.colatitude &&
my.longitude == his.longitude;
}
private double clampAngle(double radians) {
radians %= RotationDisplacement.REVOLUTION;
if (radians < 0) {
radians += RotationDisplacement.REVOLUTION;
}
return radians;
}
}
对于解决这个具体问题的任何见解都将不胜感激。
答案 0 :(得分:2)
当然,需要帮助才能看到自己的解决方案&lt;叹息&gt;。
问题在于我使用从球体中心到表面的矢量(顶点坐标)来确定顶点之间的角度,而不是从面的质心到顶点的矢量。后一种方法将给出[0,2 * PI]范围内的结果,因为点围绕质心旋转,而先前的方法只是检索顶点之间的大圆距离。
我修复了getCounterClockwiseOrder
方法,如下所示,现在可行。我会留下这个问题,以防其他人正在寻找如何用Java确定球形Voronoi曲面细分。
private static List<Point> getCounterClockwiseOrder(List<Point> points) {
List<Point> ordered = new ArrayList<Point>(points);
final Point c = getCentroid(points);
final Point n = c.getNormalized();
final Point s = points.get(0);
final Point toS = s.minusCartesian(c).getNormalized();
Collections.sort(
ordered,
new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
if (o1.equals(o2)) {
return 0;
} else {
return Double.compare(
getDistanceFromS(o1),
getDistanceFromS(o2)
);
}
}
private double getDistanceFromS(Point p) {
if (s.equals(p)) {
return 0;
}
Point toP = p.minusCartesian(c).getNormalized();
double distance = toS.getSphericalDistanceTo(toP);
Point cross = toS.cross(toP).getNormalized();
if (n.dot(cross) < 0) {
distance = RotationDisplacement.REVOLUTION - distance;
}
return distance;
}
}
);
return ordered;
}