int main ()
{
int n = 0;
int base = 0;
while(n < 10)
{
int x = 2;
int answer = power(x, n);
float neganswer = negpower(x, n);
printf("%d %d %f\n", base, answer, neganswer);
base++;
n++;
}
return EXIT_SUCCESS;
}
int power(int base, int power)
{
int result, i;
result = 1;
for (i=0; i < power; i++)
{
result *= base;
}
return result;
}
int negpower(int base, int power)
{
float result, i;
result = 1.0;
for (i=0; i < power; i++)
{
result = result / base;
}
return result;
}
所以我试图调用我已经制作的这个函数,我认为它正确计算它,但它只输出1.0000000,然后直接输出0.0000000。我认为携带浮动值有问题,任何人都可以插入吗?
由于
答案 0 :(得分:2)
这是因为您从[{1}}返回float
,其返回类型为negpower()
,并将其分配给int
。
改变
float neganswer
到
int negpower(int base, int power)
输出:
旁注:
- 始终添加所需的头文件。
- 如果函数定义出现在
float negpower(int base, int power)
之后,则应声明原型。
答案 1 :(得分:2)
答案要简单得多。当你实际从中返回int
时,你的negpower函数会返回float
。改变原型,它应该可以正常工作。
答案 2 :(得分:1)
如果您有兴趣,这是优化的库:
#ifdef DOCUMENTATION
title pow x raised to power y
index x raised to power y
usage
.s
double x, y, f, pow();
.br
f = pow(x, y);
.s
description
.s
Returns value of x raised to power y
.s
diagnostics
.s
There are three error possible error messages from this function.
.s
If the x argument is negative the message 'pow arg negative',
followed by the value of x, is written to stderr. The value
of pow for |x| is returned.
.s
If x = 0.0 and y <= 0.0 or if result overflows the message 'pow
overflow', followed by the value of y, is written to stderr.
The value of HUGE is returned.
.s
If the result underflows and if warnings are enabled (normally not),
the message 'pow underflow', followed by the value of y, is written
to stderr. The value of 0 is returned.
.s
The suggestion of Cody and Waite, that the domain be reduced to
simplify the overflow test, has been adopted, consequently overflow
is reported if the result would exceed HUGE * 2**(-1/16).
2**(-1/16) is approximately 0.9576.
.s
internal
.s
Algorithm from Cody and Waite pp. 84-124. This algorithm required
two auxiliary programs POWGA1 and POWGA2 to calculate, respectively,
the arrays a1[] and a2[] used to represent the powers of 2**(-1/16)
to more than machine precision.
The source code for these programs are in the files POWGA1.AUX and
POWGA2.AUX. The octal table on page 98 of Cody and Waite is in the
file POWOCT.DAT which is required on stdin by POWGA2.
.s
author
.s
Hamish Ross.
.s
date
.s
27-Jan-85
#endif
#include <math.h>
#define MAXEXP 2031 /* (MAX_EXP * 16) - 1 */
#define MINEXP -2047 /* (MIN_EXP * 16) - 1 */
static double a1[] = {
1.0,
0.95760328069857365,
0.91700404320467123,
0.87812608018664974,
0.84089641525371454,
0.80524516597462716,
0.77110541270397041,
0.73841307296974966,
0.70710678118654752,
0.67712777346844637,
0.64841977732550483,
0.62092890603674203,
0.59460355750136054,
0.56939431737834583,
0.54525386633262883,
0.52213689121370692,
0.50000000000000000
};
static double a2[] = {
0.24114209503420288E-17,
0.92291566937243079E-18,
-0.15241915231122319E-17,
-0.35421849765286817E-17,
-0.31286215245415074E-17,
-0.44654376565694490E-17,
0.29306999570789681E-17,
0.11260851040933474E-17
};
static double p1 = 0.833333333333332114e-1;
static double p2 = 0.125000000005037992e-1;
static double p3 = 0.223214212859242590e-2;
static double p4 = 0.434457756721631196e-3;
static double q1 = 0.693147180559945296e0;
static double q2 = 0.240226506959095371e0;
static double q3 = 0.555041086640855953e-1;
static double q4 = 0.961812905951724170e-2;
static double q5 = 0.133335413135857847e-2;
static double q6 = 0.154002904409897646e-3;
static double q7 = 0.149288526805956082e-4;
static double k = 0.442695040888963407;
double pow(x, y)
double x, y;
{
double frexp(), g, ldexp(), r, u1, u2, v, w, w1, w2, y1, y2, z;
int iw1, m, p;
if (y == 0.0)
return(1.0);
if (x <= 0.0) {
if (x == 0.0) {
if (y > 0.0)
return(x);
cmemsg(FP_POWO, &y);
return(HUGE);
}
else {
cmemsg(FP_POWN, &x);
x = -x;
}
}
g = frexp(x, &m);
p = 0;
if (g <= a1[8])
p = 8;
if (g <= a1[p + 4])
p += 4;
if (g <= a1[p + 2])
p += 2;
p++;
z = ((g - a1[p]) - a2[p / 2]) / (g + a1[p]);
z += z;
v = z * z;
r = (((p4 * v + p3) * v + p2) * v + p1) * v * z;
r += k * r;
u2 = (r + z * k) + z;
u1 = 0.0625 * (double)(16 * m - p);
y1 = 0.0625 * (double)((int)(16.0 * y));
y2 = y - y1;
w = u2 * y + u1 * y2;
w1 = 0.0625 * (double)((int)(16.0 * w));
w2 = w - w1;
w = w1 + u1 * y1;
w1 = 0.0625 * (double)((int)(16.0 * w));
w2 += (w - w1);
w = 0.0625 * (double)((int)(16.0 * w2));
iw1 = 16.0 * (w1 + w);
w2 -= w;
while (w2 > 0.0) {
iw1++;
w2 -= 0.0625;
}
if (iw1 > MAXEXP) {
cmemsg(FP_POWO, &y);
return(HUGE);
}
if (iw1 < MINEXP) {
cmemsg(FP_POWU, &y);
return(0.0);
}
m = iw1 / 16;
if (iw1 >= 0)
m++;
p = 16 * m - iw1;
z = ((((((q7*w2 + q6)*w2 + q5)*w2 + q4)*w2 + q3)*w2 + q2)*w2 + q1)*w2;
z = a1[p] + a1[p] * z;
return(ldexp(z, m));
}
答案 3 :(得分:0)
你那里有各种各样的赌注。执行此操作时,小数将被截断。你应该让你的幂函数返回浮点数,并使用浮点base
。