我正在使用函数cvCalcOpticalFlowPyrLK()
来检测和跟踪视频中的移动对象。我使用Canny()
函数来获取要跟踪的功能。但结果并不好,它有cvCalcOpticalFlowPyrLK()
的噪音。
请参阅下面的代码:
#include <windows.h>
#include <stdio.h>
#include <vector>
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
double Distance(Point& p1, Point& p2)
{
return abs(p2.x - p1.x) + abs(p2.y - p1.y);
}
VOID EliminateBgrLines(vector<vector<Point>>* srcCountours, vector<vector<Point>>* dstCountours,
CvPoint2D32f* frame1_features, CvPoint2D32f* frame2_features, char* optical_flow_found_feature)
{
Point p, q;
int featureIndex = 0;
int numContours = srcCountours->size();
int* removeContoursIndex = new int[numContours];
int countRemoveContours = 0;
vector<vector<Point>>::iterator Iter;
int iterIndex = 0;
for(Iter = srcCountours->begin() ; Iter != srcCountours->end() ; Iter++)
{
vector<Point> contour = *Iter;
int numPoints = contour.size();
int countBgrPoints = 0;
int countTotalPointsFound = 0;
double totalDistance = 0;
for(int k = 0 ; k < numPoints; k++)
{
if(optical_flow_found_feature[featureIndex] == 0)
{
featureIndex ++;
countBgrPoints ++; //The points that can not find in the next frame will be treated as background point
continue;
}
countTotalPointsFound ++;
p. x = (int)frame1_features[featureIndex].x;
p. y = (int)frame1_features[featureIndex].y;
q. x = (int)frame2_features[featureIndex].x;
q. y = (int)frame2_features[featureIndex].y;
featureIndex ++;
double d = Distance(p, q);
totalDistance += d;
double opticalFlowThreshold = 1;
if(d < opticalFlowThreshold)
countBgrPoints ++;
}
int eliminateBgrLineThreshold = 40; //40 %
if ( (double)countBgrPoints/numPoints > (eliminateBgrLineThreshold/100) ) //eliminateBgrLineThreshold(%) is bgr point
{
removeContoursIndex[countRemoveContours] = iterIndex;
countRemoveContours ++;
}
iterIndex++;
}
for(int i = 0 ; i < numContours; i++)
{
if(trackingCoreGlobal->ISContainInArray(i, removeContoursIndex, countRemoveContours) == false)
dstCountours->insert(dstCountours->end(), srcCountours->at(i));
}
delete []removeContoursIndex;
}
int main()
{
long current_frame = 0 ;
CvSize frame_size;
long number_of_frames = 0;
CvCapture *input_video = NULL;
input_video = cvCaptureFromFile(videoPath);
if (input_video == NULL)
return false;
cvQueryFrame(input_video);
frame_size.height = (int)cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_HEIGHT);
frame_size.width = (int)cvGetCaptureProperty(input_video, CV_CAP_PROP_FRAME_WIDTH);
/* Go to the end of the AVI (The fraction is "1") */
cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_AVI_RATIO, 1.0) ;
number_of_frames = (int)cvGetCaptureProperty( input_video, CV_CAP_PROP_POS_FRAMES) ;
/* Return to the beginning */
cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_FRAMES , 0.0) ;
int number_of_features = 0;
CvPoint2D32f* frame1_features = new CvPoint2D32f[NUMBER_OF_FEATURES];
CvPoint2D32f* frame2_features = new CvPoint2D32f[NUMBER_OF_FEATURES];
char* optical_flow_found_feature = new char[NUMBER_OF_FEATURES];
float* optical_flow_feature_error = new float[NUMBER_OF_FEATURES];
while(isStopped == false)
{
static IplImage * frame = NULL, * frame1_1C = NULL, * frame2_1C =
NULL, * eig_image = NULL, * temp_image = NULL, * pyramid1 = NULL, * pyramid2 = NULL;
/* Go to the frame we want. Important if multiple frames are queried in
* the loop which they of course are for optical flow. Note that the very
* first call to this is actually not needed . ( Because the correct position
* is set outsite the for () loop.)
*/
cvSetCaptureProperty( input_video, CV_CAP_PROP_POS_FRAMES, current_frame) ;
/* Get the next frame of the video.
* IMPORTANT ! cvQueryFrame() always returns a pointer to the _ same_
* memory location. So successive calls :
* frame1 = cvQueryFrame();
* frame2 = cvQueryFrame();
* frame3 = cvQueryFrame();
* will result in ( frame1 == frame2 && frame2 == frame3 ) being true.
* The solution is to make a copy of the cvQueryFrame() output .
*/
frame = cvQueryFrame(input_video);
if(frame == NULL)
return false;
frame1_1C = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
if(frame1_1C == NULL)
return false;
cvConvertImage(frame, frame1_1C);
/* Get the second frame of video. Sample principles as the first */
frame = cvQueryFrame(input_video);
if(frame == NULL)
return false;
frame2_1C = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
if(frame2_1C == NULL)
return false;
cvConvertImage(frame, frame2_1C);
/*Preparation : Allocate the necessary storage*/
eig_image = cvCreateImage(frame_size, IPL_DEPTH_32F, 1);
if(eig_image == NULL)
return false;
temp_image = cvCreateImage(frame_size, IPL_DEPTH_32F, 1);
if(temp_image == NULL)
return false;
number_of_features = 0;
/* Actually run the Shi and Tomasi algorithm !!
* "frame1 _ 1 C " is the input image.
* "eig _ image" and " temp_ image" are just workspace for the algorithm .
* The first ".01" specifies the minimum quality of the features ( based on the
eigenvalues ).
* The second ".01" specifies the minimum Euclidean distance between features .
* "NULL" means use the entire input image. You could point to a part of the
image.
* WHEN THE ALGORITHM RETURNS:
* "frame1 _ features" will contain the feature points.
* "number _ of_ features" will be set to a value < = NUMBER_OF_FEATURES indicating the number of
feature points found.
*/
//Get Features by using Canny Edges - Begin
int ratio = 3;
int kernel_size = 3;
int cannyThreshold = 40;
Mat detected_edges;
Mat frame1_1C_Mat = cvarrToMat(frame1_1C);
// Reduce noise with a kernel 3x3
blur(frame1_1C_Mat, detected_edges, Size(3,3)) ;
// Canny detector
Canny(detected_edges, detected_edges, cannyThreshold, cannyThreshold*ratio, kernel_size);
RNG rng(12345);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(detected_edges, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
DrawContours(contours, "Before Removing Bgr Contours"); //This function will draw the result contours
//Copy feature for tracking by optical flow
int numContours = contours.size();
for(int i = 0 ; i < numContours; i++)
{
vector<Point> contour = contours.at(i);
int numPoints = contour.size();
for(int k = 0 ; k < numPoints; k++)
{
Point point = contour.at(k);
frame1_features[number_of_features].x = point.x;
frame1_features[number_of_features].y = point.y;
number_of_features++;
}
}
/*
This termination criteria tells the algorithm to stop when it has either done
20 iterations or when epsilon is better than 0.3, you can play with these parameters
for speed vs accuracy but these values work pretty well in many situations.
*/
CvTermCriteria optical_flow_termination_criteria = cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3) ;
/* This is some workspace for the algorithm.
The algorithm actually carves the image into pyramids of different resolutions
*/
pyramid1 = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
if(pyramid1 == NULL)
return false;
pyramid2 = cvCreateImage(frame_size, IPL_DEPTH_8U, 1);
if(pyramid2 == NULL)
return false;
/*Actually run Pyramidal Lucas Kanade Optical Flow!!
* "frame1_1C" is the first frame with the known features.
* "frame2_1C" is the second frame where we want to find the first frame's features.
* "pyramid1" and "pyramid2" are workspace for the algorithm.
* "frame1_features" are the features from the first frame.
* "frame2_features" is the (outputted) locations of those features in the second frame.
* "number_ of_features" is the number of features in the frame 1 _ features array .
* "optical_flow_window" is the size of the window to use to avoid the aperture problem.
* "5" is the maximum number of pyramids to use. 0 would be just one level.
* "optical_flow_found_feature" is as described above (non-zero iff feature found by the flow).
* "optical_flow_feature_error" is as described above (error in the flow for this feature).
* "optical_flow_termination_criteria" is as described above (how long the algorithm should look).
* "0" means disable enhancements. (For example , the second array isn't pre-initialized with guesses)
*/
/*This is the window size to use to avoid the aperture problem (see slide "Optical Flow: Overview")*/
int opticalFlowWindowSize = 21;
int pyramidLevel = 5;
CvSize optical_flow_window = cvSize(opticalFlowWindowSize, opticalFlowWindowSize);
cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2, frame1_features,
frame2_features, number_of_features, optical_flow_window, pyramidLevel,
optical_flow_found_feature, optical_flow_feature_error,
optical_flow_termination_criteria, 0) ;
vector<vector<Point>> afterRemoveBgrItemContours;
EliminateBgrLines(&contours, &afterRemoveBgrItemContours, frame1_features, frame2_features, optical_flow_found_feature);
DrawContours(afterRemoveBgrItemContours, "After Removing Bgr Contours"); //This function will draw the result contours
current_frame++;
if (current_frame >= number_of_frames - 1)
current_frame = 0;
detected_edges.release();
frame1_1C_Mat.release();
detected_edges.release();
cvReleaseImage(&frame1_1C);
cvReleaseImage(&frame2_1C);
cvReleaseImage(&eig_image);
cvReleaseImage(&temp_image);
cvReleaseImage(&pyramid1);
cvReleaseImage(&pyramid2);
} //End while(true)
delete []frame1_features;
delete []frame2_features;
delete []optical_flow_found_feature;
delete []optical_flow_feature_error;
}
我尝试过许多阈值,但它无法很好地消除噪音。
以下是我尝试过的一些结果:
我尝试过许多其他阈值,但它仍然有很多噪音, 有人可以告诉我如何改进我的算法以获得更好的结果吗?
非常感谢,
T&amp; T公司
答案 0 :(得分:1)
Canny边缘不会为光流提供非常好的功能。你应该尝试使用名字很好的goodFeaturesToTrack()。
答案 1 :(得分:0)
你已经使用模糊内核去除噪音,但有很多选项(高斯模糊,中位模糊,双边过滤等)。您可能希望尝试这些以查看这些是否可以改善您的结果。请注意,使用模糊将删除某些边(以及特征)。改变内核大小也会对噪声消除产生很大影响。您还可以尝试更改canny检测器的内核大小。
我并不认为精确的边缘非常适合跟踪。有更好的选择。