将Alpha Beta实施到Minimax中

时间:2013-09-10 10:27:14

标签: c++ minimax alpha-beta-pruning

我正在尝试将Alpha Beta修剪添加到我的极小动作中,但我无法理解我哪里出错了。

目前我正在进行5000次迭代,根据朋友的说法,我应该经历大约16,000次迭代。当选择第一个位置时,它返回-1(一个损失),而它应该能够在这一点上肯定返回一个0(平局),因为它应该能够从空板上绘制,但是我看不到因为我遵循我的代码我出错了,似乎很好

奇怪的是,如果我在我的支票中切换返回的Alpha和Beta(以实现返回0),计算机将尝试绘制但从不启动任何获胜动作,只有块

我的逻辑流程

如果我们正在寻找alpha: 如果得分>阿尔法,改变阿尔法。如果alpha和beta重叠,则返回alpha

如果我们正在寻找测试版: 如果得分<测试版,改变测试版。如果alpha和beta重叠,则返回beta

这是我的 递归调用

int MinimaxAB(TGameBoard* GameBoard, int iPlayer, bool _bFindAlpha, int _iAlpha, int _iBeta) 
{

    //How is the position like for player (their turn) on iGameBoard?
    int iWinner = CheckForWin(GameBoard);
    bool bFull = CheckForFullBoard(GameBoard);

    //If the board is full or there is a winner on this board, return the winner
    if(iWinner != NONE || bFull == true) 
    {
        //Will return 1 or -1 depending on winner
        return iWinner*iPlayer;
    }

    //Initial invalid move (just follows i in for loop)
    int iMove = -1;
    //Set the score to be instantly beaten
    int iScore = INVALID_SCORE;

    for(int i = 0; i < 9; ++i)
    {
        //Check if the move is possible
        if(GameBoard->iBoard[i] == 0) 
        {
            //Put the move in
            GameBoard->iBoard[i] = iPlayer;

            //Recall function
            int iBestPositionSoFar = -MinimaxAB(GameBoard, Switch(iPlayer), !_bFindAlpha, _iAlpha, _iBeta);

            //Replace Alpha and Beta variables if they fit the conditions - stops checking for situations that will never happen
            if (_bFindAlpha == false)
            {
                if (iBestPositionSoFar < _iBeta)
                {
                    //If the beta is larger, make the beta smaller
                    _iBeta = iBestPositionSoFar;
                    iMove = i;

                    if (_iAlpha >= _iBeta)
                    {
                        GameBoard->iBoard[i] = EMPTY;

                        //If alpha and beta are overlapping, exit the loop
                        ++g_iIterations;
                        return _iBeta;

                    }
                }
            }
            else
            {
                if (iBestPositionSoFar > _iAlpha)
                {
                    //If the alpha is smaller, make the alpha bigger
                    _iAlpha = iBestPositionSoFar;
                    iMove = i;

                    if (_iAlpha >= _iBeta)
                    {
                        GameBoard->iBoard[i] = EMPTY;

                        //If alpha and beta are overlapping, exit the loop
                        ++g_iIterations;
                        return _iAlpha;
                    }
                }
            }

            //Remove the move you just placed
            GameBoard->iBoard[i] = EMPTY;
        }
    }


    ++g_iIterations;

    if (_bFindAlpha == true)
    {
        return _iAlpha;
    }
    else
    {
        return _iBeta;
    }
}

初始通话(计算机应选择位置时)

int iMove = -1; //Invalid
int iScore = INVALID_SCORE;

for(int i = 0; i < 9; ++i) 
{
    if(GameBoard->iBoard[i] == EMPTY) 
    {
        GameBoard->iBoard[i] = CROSS;
        int tempScore = -MinimaxAB(GameBoard, NAUGHT, true, -1000000, 1000000);
        GameBoard->iBoard[i] = EMPTY;

        //Choosing best value here
        if (tempScore > iScore)
        {
            iScore = tempScore;
            iMove = i;
        }
    }
}
//returns a score based on Minimax tree at a given node.
GameBoard->iBoard[iMove] = CROSS;

有关我的逻辑流程的任何帮助都会使计算机返回正确的结果并做出明智的动作

1 个答案:

答案 0 :(得分:1)

如果没有alpha-beta修剪,你的算法是否能完美运行?对于false,您的初始调用应该以{{1​​}}给出,因为根节点的行为类似于alpha节点,但看起来这不会产生影响:

_bFindAlpha

因此,我建议您放弃此int tempScore = -MinimaxAB(GameBoard, NAUGHT, false, -1000000, 1000000); 废话并将算法转换为negamax。它的行为与minimax完全相同,但使您的代码更短更清晰。而不是检查是否最大化alpha或最小化beta,你可以在递归调用时交换和否定(这与你现在可以返回函数的否定值的原因相同)。这是维基百科伪代码的略微编辑版本:

_bFindAlpha

除非你喜欢单步搜索树,否则我认为你会发现编写一个干净,正确的negamax版本比调试你当前的实现更容易。