我在使Alpha-beta修剪工作正常时遇到了一些困难。 我有一个功能性的Minimax算法,我试图适应,但无济于事。我在Wikipedia
上使用了这个例子目前,该算法似乎在大多数情况下按预期运行,但随后它选择了第一个被测试的节点。
这可能是由于缺乏了解,但我已经花了几个小时阅读。令我感到困惑的是,当算法在零和游戏中达到其深度限制时,该算法应该如何知道哪个节点是最佳选择;在这一点上,不能确定哪个玩家会从这样的行动中受益最多,是吗?
无论如何,我的.cpp在下面。我的原始极小极大功能和任何帮助都将不胜感激!
AIMove ComputerInputComponent::FindBestMove() {
const Graph<HexNode>* graph = HexgameCore::GetInstance().GetGraph();
std::vector<AIMove> possibleMoves;
FindPossibleMoves(*graph, possibleMoves);
AIMove bestMove = AIMove();
int alpha = INT_MIN;
int beta = INT_MAX;
int depth = 6;
Node* currentNode;
for (const AIMove &move : possibleMoves) {
std::cout << move << std::endl;
graph->SetNodeOwner(move.x, move.y, (NodeOwner)aiPlayer);
int v = MiniMaxAlphaBeta(*graph, depth, alpha, beta, true);
graph->SetNodeOwner(move.x, move.y, NodeOwner::None);
if (v > alpha) {
alpha = v;
bestMove.x = move.x;
bestMove.y = move.y;
}
}
return bestMove;
}
template<typename T>
int ComputerInputComponent :: MiniMaxAlphaBeta(const Graph&amp; graph,int depth,int alpha,int beta,bool isMaximiser){
std::vector<AIMove> possibleMoves;
FindPossibleMoves(graph, possibleMoves);
if (lastTestedNode != nullptr) {
Pathfinder pathFinder;
bool pathFound = pathFinder.SearchForPath(lastTestedNode, graph.GetMaxX(), graph.GetMaxY());
if (pathFound) {
//std::cout << "pathfound-" << std::endl;
if ((int)lastTestedNode->GetOwner() == aiPlayer) {
std::cout << "cpuWin-" << std::endl;
return 10;
}
else if ((int)lastTestedNode->GetOwner() == humanPlayer) {
std::cout << "playerWin-" << std::endl;
return -10;
}
}
else {
if (depth == 0) {
//std::cout << "NoPath-" << std::endl;
return 0;
}
}
}
if (isMaximiser) {// Max
int v = -INT_MAX;
for (const AIMove &move : possibleMoves) {
graph.SetNodeOwner(move.x, move.y, (NodeOwner)aiPlayer);
graph.FindNode(move.x, move.y, lastTestedNode);
v = std::max(alpha, MiniMaxAlphaBeta(graph, depth - 1, alpha, beta, false));
alpha = std::max(alpha, v);
graph.SetNodeOwner(move.x, move.y, NodeOwner::None);
if (beta <= alpha)
break;
}
return v;
}
else if (!isMaximiser){ // Min
//std::cout << "Human possiblMoves size = " << possibleMoves.size() << std::endl;
int v = INT_MAX;
for (const AIMove &move : possibleMoves) {
graph.SetNodeOwner(move.x, move.y, (NodeOwner)humanPlayer);
v = std::min(beta, MiniMaxAlphaBeta(graph, depth - 1, alpha, beta, true));
beta = std::min(beta, v);
graph.SetNodeOwner(move.x, move.y, NodeOwner::None);
if (beta <= alpha)
break;
}
return v;
}
}
答案 0 :(得分:0)
您的minimax递归调用和移动代数在逻辑上是正确的,除非您不应该使用它直接在内部结束获胜者。你的叶节点评估应该很强,这是关键,你的代码似乎缺乏。此外,详细的叶节点函数将使AI决策变得太慢。
这是递归MiniMax函数的伪代码.Say parent_graph是评估最佳移动前的状态,leaf_graph是当前离开节点状态。你必须在极小极大树中找到相对(不要与绝对混合)最佳分支。
if (depth == 0) {
return EvaluateLeafNode(isMaximizing,parent_graph,leaf_graph);
}
EvaluateLeafNode函数可以这样读:
int EvaluateLeafNode(bool isMaximizing,Graph& parent_graph,Graph& leaf_graph)
{
int score = 0;
int w = find_relative_white_deads(parent_graph,leaf_graph);
int b = find_relative_black_deads(parent_graph,leaf_graph);
if(isMaximizing)
score += b;
else
score += w;
return score;
}