Numpy的meshgrid对于将两个向量转换为坐标网格非常有用。将此扩展到三维的最简单方法是什么?因此,给定三个向量x,y和z,构造3x3D数组(而不是2x2D数组),可以用作坐标。
答案 0 :(得分:40)
Numpy(我认为是1.8)现在支持使用meshgrid生成2D位置网格的更高版本。真正帮助我的一个重要补充是能够选择索引顺序(分别为xy
或ij
进行笛卡尔坐标或矩阵索引),我通过以下示例进行了验证:
import numpy as np
x_ = np.linspace(0., 1., 10)
y_ = np.linspace(1., 2., 20)
z_ = np.linspace(3., 4., 30)
x, y, z = np.meshgrid(x_, y_, z_, indexing='ij')
assert np.all(x[:,0,0] == x_)
assert np.all(y[0,:,0] == y_)
assert np.all(z[0,0,:] == z_)
答案 1 :(得分:29)
这是meshgrid的源代码:
def meshgrid(x,y):
"""
Return coordinate matrices from two coordinate vectors.
Parameters
----------
x, y : ndarray
Two 1-D arrays representing the x and y coordinates of a grid.
Returns
-------
X, Y : ndarray
For vectors `x`, `y` with lengths ``Nx=len(x)`` and ``Ny=len(y)``,
return `X`, `Y` where `X` and `Y` are ``(Ny, Nx)`` shaped arrays
with the elements of `x` and y repeated to fill the matrix along
the first dimension for `x`, the second for `y`.
See Also
--------
index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
using indexing notation.
index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
using indexing notation.
Examples
--------
>>> X, Y = np.meshgrid([1,2,3], [4,5,6,7])
>>> X
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
>>> Y
array([[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7]])
`meshgrid` is very useful to evaluate functions on a grid.
>>> x = np.arange(-5, 5, 0.1)
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2)
"""
x = asarray(x)
y = asarray(y)
numRows, numCols = len(y), len(x) # yes, reversed
x = x.reshape(1,numCols)
X = x.repeat(numRows, axis=0)
y = y.reshape(numRows,1)
Y = y.repeat(numCols, axis=1)
return X, Y
理解起来相当简单。我将模式扩展到任意数量的维度,但这个代码绝不是优化的(并且没有经过彻底的错误检查),但是你可以得到你付出的代价。希望它有所帮助:
def meshgrid2(*arrs):
arrs = tuple(reversed(arrs)) #edit
lens = map(len, arrs)
dim = len(arrs)
sz = 1
for s in lens:
sz*=s
ans = []
for i, arr in enumerate(arrs):
slc = [1]*dim
slc[i] = lens[i]
arr2 = asarray(arr).reshape(slc)
for j, sz in enumerate(lens):
if j!=i:
arr2 = arr2.repeat(sz, axis=j)
ans.append(arr2)
return tuple(ans)
答案 2 :(得分:7)
您能告诉我们您如何使用np.meshgrid吗?很有可能你真的不需要meshgrid,因为numpy广播可以在不生成重复数组的情况下做同样的事情。
例如,
import numpy as np
x=np.arange(2)
y=np.arange(3)
[X,Y] = np.meshgrid(x,y)
S=X+Y
print(S.shape)
# (3, 2)
# Note that meshgrid associates y with the 0-axis, and x with the 1-axis.
print(S)
# [[0 1]
# [1 2]
# [2 3]]
s=np.empty((3,2))
print(s.shape)
# (3, 2)
# x.shape is (2,).
# y.shape is (3,).
# x's shape is broadcasted to (3,2)
# y varies along the 0-axis, so to get its shape broadcasted, we first upgrade it to
# have shape (3,1), using np.newaxis. Arrays of shape (3,1) can be broadcasted to
# arrays of shape (3,2).
s=x+y[:,np.newaxis]
print(s)
# [[0 1]
# [1 2]
# [2 3]]
重点是S=X+Y
可以而且应该被s=x+y[:,np.newaxis]
取代,因为
后者不需要(可能很大)重复阵列形成。它还可以轻松地推广到更高的尺寸(更多轴)。您只需在需要的地方添加np.newaxis
即可实现广播。
有关numpy广播的更多信息,请参阅http://www.scipy.org/EricsBroadcastingDoc。
答案 3 :(得分:5)
我认为你想要的是
X, Y, Z = numpy.mgrid[-10:10:100j, -10:10:100j, -10:10:100j]
例如。
答案 4 :(得分:4)
numpy.ix_应该做你想做的事。而不是写一个新函数。
以下是文档中的示例:
>>> ixgrid = np.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],
[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))'
答案 5 :(得分:4)
这是我写的网格网格的多维版本:
def ndmesh(*args):
args = map(np.asarray,args)
return np.broadcast_arrays(*[x[(slice(None),)+(None,)*i] for i, x in enumerate(args)])
请注意,返回的数组是原始数组数据的视图,因此更改原始数组会影响坐标数组。
答案 6 :(得分:-1)
您可以通过更改顺序来实现:
import numpy as np
xx = np.array([1,2,3,4])
yy = np.array([5,6,7])
zz = np.array([9,10])
y, z, x = np.meshgrid(yy, zz, xx)