我之前发过一个类似的问题。我试图确定一个点是否位于椭圆内。基本上我生成一些双变量法线数据并创建一个椭圆。 继承人我使用的代码
library(MASS)
set.seed(1234)
x1<-NULL
x2<-NULL
k<-1
Sigma2 <- matrix(c(.72,.57,.57,.46),2,2)
Sigma2
rho <- Sigma2[1,2]/sqrt(Sigma2[1,1]*Sigma2[2,2])
eta<-replicate(300,mvrnorm(k, mu=c(-2.503,-1.632), Sigma2))
p1<-exp(eta)/(1+exp(eta))
n<-60
x1<-replicate(300,rbinom(k,n,p1[,1]))
x2<-replicate(300,rbinom(k,n,p1[,2]))
rate1<-x1/60
rate2<-x2/60
library(car)
dataEllipse(rate1,rate2,levels=c(0.05, 0.95))
我需要找出对(p1 [,1],p1 [,2])是否位于上面椭圆的区域内。
答案 0 :(得分:7)
dataEllipse
将椭圆作为多边形返回,因此您可以使用point.in.polygon
库中的sp
函数来检查这些点是否在椭圆内:
ell = dataEllipse(rate1, rate2, levels=c(0.05, 0.95))
point.in.polygon(rate1, rate2, ell$`0.95`[,1], ell$`0.95`[,2])
当我运行以下代码时......
library(MASS)
set.seed(1234)
x1<-NULL
x2<-NULL
k<-1
Sigma2 <- matrix(c(.72,.57,.57,.46),2,2)
Sigma2
rho <- Sigma2[1,2]/sqrt(Sigma2[1,1]*Sigma2[2,2])
eta<-replicate(300,mvrnorm(k, mu=c(-2.503,-1.632), Sigma2))
p1<-exp(eta)/(1+exp(eta))
n<-60
x1<-replicate(300,rbinom(k,n,p1[,1]))
x2<-replicate(300,rbinom(k,n,p1[,2]))
rate1<-x1/60
rate2<-x2/60
library(car)
ell = dataEllipse(rate1, rate2, levels=c(0.05, 0.95))
library(sp)
point.in.polygon(rate1, rate2, ell$`0.95`[,1], ell$`0.95`[,2])
...我得到以下输出
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[56] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[111] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[166] 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
[221] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[276] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
答案 1 :(得分:1)
找到C并减去半径