我正在用Python创建一个游戏(带有pygame),这需要我为每个新游戏生成随机但漂亮的“海洋”。经过长时间的搜索,我确定了一个算法,该算法涉及padlib.py中定义的贝塞尔曲线。我现在需要弄清楚padlib生成的曲线何时与线段相交。
蛮力方法是使用padlib生成的近似线段集来查找答案。但是,我怀疑可以通过分析找到更好的答案。我只有几十个样条线段 - 搜索它们应该比数千个线段更快。
一点点搜索让我走上了这条道路:Bezier Curve - > Kochanek-Bartels Spline - > Cubic Hermite spline
在最后一页,我发现了这个功能:
p (t)= h 00 (t) p 0 + h 10 < / sub>(t) m 0 + h 01 (t) p 1 + h 11 (t) m 1
其中 p (t)实际上是一个点(二维向量),h ij (t)函数是三次多项式, p 0 , p 1 , m 0 和 m < / b> 1 是我可以从padlib代码获得的点。
现在,我可以看到我的问题的解决方案是 p (t)= u + v * t 1 ,其中 u 和 v 是我的线段的结尾。
然而,制定分析解决方案超出了我的范围。这里有人知道现有的解决方案吗?或者可以帮我解决方程式?
答案 0 :(得分:9)
作为粗略轮廓,旋转并平移系统,使线段位于X轴上。现在y坐标是参数t的三次函数。找到'零'(分析公式将在优秀的数学文本或维基百科中找到)。现在评估与这些零点相对应的x坐标,并根据您的线段进行测试。
答案 1 :(得分:5)
我终于得到了一个工作代码来说明Mark Thornton建议的方法。下面是交集例程的Python代码,以及可视化测试它的pygame代码。立方根解决方案可以基于this问题编写。
import pygame
from pygame.locals import *
import sys
import random
from math import sqrt, fabs, pow
from lines import X, Y
import itertools
import pygame
from pygame import draw, Color
import padlib
from roots_detailed import cubicRoots
def add_points(*points):
X = 0
Y = 0
for (x,y) in points:
X += x
Y += y
return (X,Y)
def diff_points(p2, p1):
# p2 - p1
return (X(p2)-X(p1), Y(p2)-Y(p1));
def scale_point(factor, p):
return (factor * X(p), factor*Y(p))
def between(v0, v, v1):
if v0 > v1: v0, v1 = v1, v0
return v >= v0 and v <= v1
# the point is guaranteed to be on the right line
def pointOnLineSegment(l1, l2, point):
return between(X(l1), X(point), X(l2)) and between(Y(l1), Y(point), Y(l2))
def rotate(x, y, R1, R2, R3, R4):
return (x*R1 + y*R2, x*R3 + y * R4);
def findIntersections(p0, p1, m0, m1, l1, l2):
# We're solving the equation of one segment of Kochanek-Bartels
# spline intersecting with a line segment
# The spline is described at http://en.wikipedia.org/wiki/Cubic_Hermite_spline
# The discussion on the adopted solution can be found at https://stackoverflow.com/questions/1813719/intersection-between-bezier-curve-and-a-line-segment
#
# The equation we're solving is
#
# h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 = u + v t1
#
# where
#
# h00(t) = 2t^3 - 3t^2 + 1
# h10(t) = t^3 - 2t^2 + t
# h01(t) = -2t^3 + 3t^2
# h11(t) = t^3 - t^2
# u = l1
# v = l2-l1
u = l1
v = diff_points(l2, l1);
# The first thing we do is to move u to the other side:
#
# h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 - u = v t1
#
# Then we're looking for matrix R that would turn (v t1) into
# ({|v|, 0} t1). This is rotation of coordinate system matrix,
# described at http://mathworld.wolfram.com/RotationMatrix.html
#
# R(h00(t) p0 + h10(t) m0 + h01(t) p1 + h11(t) m1 - u) = R(v t1) = {|v|, 0}t1
#
# We only care about R[1,0] and R[1,1] because it lets us solve
# the equation for y coordinate where y == 0 (intersecting the
# spline segment with the x axis of rotated coordinate
# system). I'll call R[1,0] = R3 and R[1,1] = R4 .
v_abs = sqrt(v[0] ** 2 + v[1] ** 2)
R1 = X(v) / v_abs
R2 = Y(v) / v_abs
R3 = -Y(v) / v_abs
R4 = X(v) / v_abs
# The letters x and y are denoting x and y components of vectors
# p0, p1, m0, m1, and u.
p0x = p0[0]; p0y = p0[1]
p1x = p1[0]; p1y = p1[1]
m0x = m0[0]; m0y = m0[1]
m1x = m1[0]; m1y = m1[1]
ux = X(u); uy = Y(u)
#
#
# R3(h00(t) p0x + h10(t) m0x + h01(t) p1x + h11(t) m1x - ux) +
# + R4(h00(t) p0y + h10(t) m0y + h01(t) p1y + h11(t) m1y - uy) = 0
#
# Opening all parentheses and simplifying for hxx we get:
#
# h00(t) p0x R3 + h10(t) m0x R3 + h01(t) p1x R3 + h11(t) m1x R3 - ux R3 +
# + h00(t) p0y R4 + h10(t) m0y R4 + h01(t) p1y R4 + h11(t) m1y R4 - uy R4 = 0
#
# h00(t) p0x R3 + h10(t) m0x R3 + h01(t) p1x R3 + h11(t) m1x R3 - ux R3 +
# + h00(t) p0y R4 + h10(t) m0y R4 + h01(t) p1y R4 + h11(t) m1y R4 - uy R4 = 0
#
# (1)
# h00(t) (p0x R3 + p0y R4) + h10(t) (m0x R3 + m0y R4) +
# h01(t) (p1x R3 + p1y R4) + h11(t) (m1x R3 + m1y R4) - (ux R3 + uy R4) = 0
#
# We now introduce new substitution
K00 = p0x * R3 + p0y * R4
K10 = m0x * R3 + m0y * R4
K01 = p1x * R3 + p1y * R4
K11 = m1x * R3 + m1y * R4
U = ux * R3 + uy * R4
# Expressed in those terms, equation (1) above becomes
#
# h00(t) K00 + h10(t) K10 + h01(t) K01 + h11(t) K11 - U = 0
#
# We will now substitute the expressions for hxx(t) functions
#
# (2t^3 - 3t^2 + 1) K00 + (t^3 - 2t^2 + t) K10 + (-2t^3 + 3t^2) K01 + (t^3 - t^2) K11 - U = 0
#
# 2 K00 t^3 - 3 K00 t^2 + K00 +
# + K10 t^3 - 2 K10 t^2 + K10 t -
# - 2 K01 t^3 + 3 K01 t^2 +
# + K11 t^3 - K11 t^2 - U = 0
#
# 2 K00 t^3 - 3 K00 t^2 + 0t + K00
# + K10 t^3 - 2 K10 t^2 + K10 t
# - 2 K01 t^3 + 3 K01 t^2
# + K11 t^3 - K11 t^2 + 0t - U = 0
#
# (2 K00 + K10 - 2K01 + K11) t^3
# +(-3 K00 - 2K10 + 3 K01 - K11) t^2
# + K10 t
# + K00 - U = 0
#
#
# (2 K00 + K10 - 2K01 + K11) t^3 + (-3 K00 - 2K10 + 3 K01 - K11) t^2 + K10 t + K00 - U = 0
#
# All we need now is to solwe a cubic equation
valuesOfT = cubicRoots((2 * K00 + K10 - 2 * K01 + K11),
(-3 * K00 - 2 * K10 + 3 * K01 - K11),
(K10),
K00 - U)
# We can then put the values of it into our original spline segment
# formula to find the potential intersection points. Any point
# that's on original line segment is an intersection
def h00(t): return 2 * t**3 - 3 * t**2 + 1
def h10(t): return t**3 - 2 * t**2 + t
def h01(t): return -2 * t**3 + 3 * t**2
def h11(t): return t**3 - t**2
intersections = []
for t in valuesOfT:
if t < 0 or t > 1.0: continue
# point = h00(t) * p0 + h10(t) * m0 + h01(t) * p1 + h11(t) * m1
point = add_points(
scale_point(h00(t), p0),
scale_point(h10(t), m0),
scale_point(h01(t), p1),
scale_point(h11(t), m1)
)
if pointOnLineSegment(l1, l2, point): intersections.append(point)
return intersections
def findIntersectionsManyCurves(p0_array, p1_array, m0_array, m1_array, u, v):
result = [];
for (p0, p1, m0, m1) in itertools.izip(p0_array, p1_array, m0_array, m1_array):
result.extend(findIntersections(p0, p1, m0, m1, u, v))
return result
def findIntersectionsManyCurvesManyLines(p0, p1, m0, m1, points):
result = [];
for (u,v) in itertools.izip(*[iter(points)]*2):
result.extend(findIntersectionsManyCurves(p0, p1, m0, m1, u, v))
return result
class EventsEmitter(object):
def __init__(self):
self.consumers = []
def emit(self, eventName, *params):
for method in self.consumers:
funcName = method.im_func.func_name if hasattr(method, "im_func") else method.func_name
if funcName == eventName:
method(*params)
def register(self, method):
self.consumers.append(method)
def unregister(self, method):
self.consumers.remove(method)
class BunchOfPointsModel(EventsEmitter):
def __init__(self):
EventsEmitter.__init__(self)
self.pts = []
def points(self):
return self.pts.__iter__()
def pointsSequence(self):
return tuple(self.pts)
def have(self, point):
return point in self.pts
def addPoint(self,p):
self.pts.append(p)
self.emit("pointsChanged", p)
def replacePoint(self, oldP, newP):
idx = self.pts.index(oldP)
self.pts[idx] = newP
self.emit("pointsChanged", newP)
def removePoint(self, p):
self.point.remove(p)
self.emit("pointsChanged", p)
class BunchOfPointsCompositeModel(object):
def __init__(self, m1, m2):
self.m1 = m1
self.m2 = m2
def points(self):
return itertools.chain(self.m1.points(), self.m2.points())
def have(self, point):
return self.m1.have(point) or self.m2.have(point)
def replacePoint(self, oldP, newP):
if self.m1.have(oldP):
self.m1.replacePoint(oldP, newP)
else:
self.m2.replacePoint(oldP, newP)
def removePoint(self, p):
if self.m1.have(p):
self.m1.removePoint(p)
else:
self.m2.removePoint(p)
def register(self, method):
self.m1.register(method)
self.m2.register(method)
def unregister(self, method):
self.m1.unregister(method)
self.m2.unregister(method)
class BunchOfPointsDragController(EventsEmitter):
def __init__(self, model):
EventsEmitter.__init__(self)
self.model = model
self.draggedPoint = None
def mouseMovedTo(self, x,y):
if self.draggedPoint != None:
newPoint = (x,y)
draggedPoint = self.draggedPoint
self.draggedPoint = newPoint
self.model.replacePoint(draggedPoint, newPoint)
def buttonDown(self, x,y):
if self.draggedPoint == None:
closePoint = self.getCloseEnoughPoint(x,y)
if closePoint != None:
self.draggedPoint = closePoint
self.emit("dragPointChanged",closePoint)
def buttonUp(self, x,y):
self.mouseMovedTo(x,y)
self.draggedPoint = None
self.emit("dragPointChanged", None)
def getCloseEnoughPoint(self, x,y):
minSquareDistance = 25
closestPoint = None
for point in self.model.points():
dx = X(point) - x
dy = Y(point) - y
distance = dx*dx + dy*dy
if minSquareDistance > distance:
closestPoint = point
minSquareDistance = distance
return closestPoint
def isDraggedPoint(self, p):
return p is self.draggedPoint
class CurvesLinesViewPointsView(object):
def __init__(self, screen, modelCurves, modelLines, model, controller):
self.screen = screen
self.modelLines = modelLines
self.modelCurves = modelCurves
self.controller = controller
controller.register(self.dragPointChanged)
model.register(self.pointsChanged)
def draw(self):
self.screen.fill(Color("black"))
pygame.draw.lines(self.screen, Color("cyan"), 0, self.modelLines.pointsSequence(), 3)
(p0, p1, m0, m1) = padlib.BezierCurve(screen,modelCurves.pointsSequence(),3,100,Color("magenta"))
self.drawPointSet(self.modelCurves.points(),
lambda(p):self.controller.isDraggedPoint(p),
Color("white"), Color("red"))
self.drawPointSet(self.modelLines.points(),
lambda(p):self.controller.isDraggedPoint(p),
Color("lightgray"), Color("red"))
self.drawSimplePointSet(findIntersectionsManyCurvesManyLines(p0, p1, m0, m1,self.modelLines.points()),
Color("blue"))
def drawSimplePointSet(self, points, normalColor):
self.drawPointSet(points, lambda(p):True, None, normalColor);
def drawPointSet(self, points, specialPoint, normalColor, specialColor):
for p in points:
if specialPoint(p):
draw.circle(self.screen, specialColor, p, 6)
else:
draw.circle(self.screen, normalColor, p, 2)
pygame.display.update()
def dragPointChanged(self, p): self.draw()
def pointsChanged(self, p): self.draw()
class PygameEventsDistributor(EventsEmitter):
def __init__(self):
EventsEmitter.__init__(self)
def processEvent(self, e):
if e.type == MOUSEMOTION:
self.emit("mouseMovedTo", e.pos[0], e.pos[1])
elif e.type == MOUSEBUTTONDOWN:
self.emit("buttonDown", e.pos[0], e.pos[1])
elif e.type == MOUSEBUTTONUP:
self.emit("buttonUp", e.pos[0], e.pos[1])
modelLines = BunchOfPointsModel()
modelCurves = BunchOfPointsModel()
model = BunchOfPointsCompositeModel(modelLines, modelCurves);
controller = BunchOfPointsDragController(model)
distributor = PygameEventsDistributor()
distributor.register(controller.mouseMovedTo)
distributor.register(controller.buttonUp)
distributor.register(controller.buttonDown)
pygame.init()
screen = pygame.display.set_mode((640, 480))
modelCurves.addPoint((29,34))
modelCurves.addPoint((98,56))
modelCurves.addPoint((200, 293))
modelCurves.addPoint((350, 293))
modelLines.addPoint((23,123))
modelLines.addPoint((78,212))
view = CurvesLinesViewPointsView(screen, modelCurves, modelLines, model, controller)
keepGoing = True
try:
while (keepGoing):
for event in pygame.event.get():
if event.type == QUIT:
keepGoing = False
break
distributor.processEvent(event)
pass
finally:
pygame.quit()