我不确定我是否正在为我写的检查奇偶校验位功能正确计算奇偶校验位。 codeWord是11个字符长,有4个奇偶校验位和7个数据位。实施看起来不错吗?
void parityCheck(char* codeWord) {
int parity[4] = {0}, i = 0, diffParity[4] = {0}, twoPower = 0, bitSum = 0;
// Stores # of 1's for each parity bit in array.
parity[0] = (codeWord[2] - 48) + (codeWord[4] - 48) + (codeWord[6] - 48) + (codeWord[8] - 48) + (codeWord[10] - 48);
parity[1] = (codeWord[2] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);
parity[2] = (codeWord[4] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48);
parity[3] = (codeWord[8] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);
// Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
for (i = 0; i < 4; i++) {
twoPower = (int)pow((double)2, i);
if (parity[i] % 2 == 0)
parity[i] = 0;
else
parity[i] = 1;
if ((codeWord[twoPower-1] - 48) != parity[i])
diffParity[i] = 1;
}
// Calculates the location of the error bit.
for (i = 0; i < 4; i++) {
twoPower = (int)pow((double)2, i);
bitSum += diffParity[i]*twoPower;
}
// Inverts bit at location of error.
if (bitSum <= 11 && bitSum > 0) {
if ((codeWord[bitSum-1] - 48))
codeWord[bitSum-1] = '0';
else
codeWord[bitSum-1] = '1';
}
答案 0 :(得分:1)
实施效果如何?
这在很大程度上取决于你对“好”的衡量标准。我可以确认它确实完成了工作,所以至少它是正确的。您的代码非常冗长,因此很难检查是否正确。我会做以下事情:
int parity_check(int codeWord) {
int parity = 0, codeWordBit, bitPos;
for (bitPos = 1; bitPos <= 11; ++bitPos) {
codeWordBit = ((codeWord >> (bitPos - 1)) & 1);
parity ^= bitPos*codeWordBit;
}
if (parity != 0) {
if (parity > 11)
return -1; // multi-bit error!
codeWord ^= 1 << (parity - 1);
}
return codeWord;
}
我将整个代码字视为一个整数,而不是一系列数字字符,效率更高。
查看the table at Wikipedia,我看到该表的列形成了序列1 ... 11的二进制表示。每个代码字位正好影响该列中提到的那些奇偶校验位,所以我取代码字位(为0或1),将其乘以该列的位模式以获得该模式或零,然后将其与当前奇偶校验位模式进行异或。这样做的结果是零代码字位不会改变任何东西,而非零代码字位翻转所有相关的奇偶校验位。
必须小心,因为位模式是从一开始的,而使用右移位技巧的位位置是从零开始的。因此,我必须减去一个,然后向右移动该数量,然后提取最低有效数字以获得codeWordBit
。
使用我的实现作为参考,我能够verify (by complete enumeration)您的代码工作原理相同。
答案 1 :(得分:0)
你的代码工作得很好AFAIK,因为它传递了我想到的测试用例。采用了一些简化,但OP功能没有改变。为了便于查看,我们进行了一些经典的简化。
void parityCheck(char* cW) {
int parity[4] = { 0 }, i = 0, diffParity[4] = { 0 }, twoPower = 0, bitSum = 0;
// Stores # of 1's for each parity bit in array.
parity[0] = (cW[2] - '0') + (cW[4] - '0') + (cW[6] - '0') + (cW[8] - '0') + (cW[10] - '0');
parity[1] = (cW[2] - '0') + (cW[5] - '0') + (cW[6] - '0') + (cW[9] - '0') + (cW[10] - '0');
parity[2] = (cW[4] - '0') + (cW[5] - '0') + (cW[6] - '0');
parity[3] = (cW[8] - '0') + (cW[9] - '0') + (cW[10] - '0');
// Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
for (i = 0; i < 4; i++) {
//twoPower = (int) pow((double) 2, i);
twoPower = 1 << i;
//if (parity[i] % 2 == 0) parity[i] = 0; else parity[i] = 1;
parity[i] &= 1; // Make 0 even, 1 odd.
if ((cW[twoPower - 1]-'0') != parity[i])
diffParity[i] = 1;
}
// Calculates the location of the error bit.
for (i = 0; i < 4; i++) {
// twoPower = (int) pow((double) 2, i);
twoPower = 1 << i;
bitSum += diffParity[i] * twoPower;
}
// Inverts bit at location of error.
if (bitSum <= 11 && bitSum > 0) {
if ((cW[bitSum - 1]-'0'))
cW[bitSum - 1] = '0';
else
cW[bitSum - 1] = '1';
}
}
void TestP(const char * Test) {
char buf[100];
strcpy(buf, Test);
parityCheck(buf);
printf("'%s' '%s'\n", Test, buf);
}
int main(void) {
TestP("00000000000");
TestP("10011100101");
TestP("10100111001");
}
如果OP发布了测试模式,那将是有用的。
答案 2 :(得分:-1)
这是我的实施。有用。公众可以免费使用它。
我使用了首字母缩略词&#34; secded&#34;如,&#34;单错误纠正,双错误检测。&#34;您可以将其重新连接为&#34;三重错误检测器&#34;如果你想要的话。实际上,其中一小部分是封闭式的,剩下的就是汉明7,4 - 但是当我这样做的时候,我将这些方法命名为我所做的。
&#34;字符串&#34;这里不是NUL终止,而是计算。此代码摘自用C编写的Python模块。这是您看到的字符串类型的出处。
这里的一个关键点是认识到只有16个汉明7,4代码。我用一些Python代码计算了secded_of_nibble(),遗憾的是我不再拥有它。
static const unsigned char secded_of_nibble[] =
{ 0x0, 0xd2, 0x55, 0x87, 0x99, 0x4b, 0xcc, 0x1e, 0xe1, 0x33, 0xb4, 0x66, 0x78, 0
xaa, 0x2d, 0xff };
int fec_secded_encode_cch_bits(const char * strIn, const int cchIn, char * strOu
t, const int cchOut)
{
assert( cchIn * 2 == cchOut);
if( cchIn * 2 != cchOut)
return 0;
if (!strIn || !strOut)
return 0;
int i;
for (i = 0; i < cchIn; i ++)
{
char in_byte = strIn[i];
char hi_byte = secded_of_nibble[(in_byte >> 4) & 0xf];
char lo_byte = secded_of_nibble[in_byte & 0xf];
strOut[i * 2] = hi_byte;
strOut[i * 2 + 1] = lo_byte;
}
return 1;
}
char bv_H[] = {0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x8};
char val_nibble(char ch)
{
return ((ch & 0x20) >> 2) | ((ch & 0xE) >> 1);
}
char correct_nibble(char ch)
{
char nibble = 0;
int i = 0;
for (i = 0; i < 8; i++)
if (ch & (1 << (7-i)))
nibble ^= bv_H[i];
return nibble;
}
void apply_correct(char nib_correct, char * pbyte, int * pcSec, int *pcDed)
{
if (0 == nib_correct)
return;
if (nib_correct & 0x8)
{
(*pcSec) ++;
int bit = (8 - (nib_correct & 0x7)) & 0x7;
/* fprintf(stderr, "bit %d, %02X\n", bit, 1 << bit);*/
(*pbyte) ^= (1 << bit);
}
else
{
(*pcDed) ++;
}
}
int fec_secded_decode_cch_bits
(
const char * strIn,
const int cchIn,
char * strOut,
const int cchOut,
int * pcSec,
int * pcDed
)
{
assert( cchIn == cchOut *2);
if( cchIn != cchOut * 2)
return 0;
if (!strIn || !strOut)
return 0;
int i;
for (i = 0; i < cchOut; i ++)
{
char hi_byte = strIn[i * 2];
char lo_byte = strIn[i * 2 + 1];
char hi_correct = correct_nibble(hi_byte);
char lo_correct = correct_nibble(lo_byte);
if (hi_correct || lo_correct)
{
apply_correct(hi_correct, &hi_byte, pcSec, pcDed);
apply_correct(lo_correct, &lo_byte, pcSec, pcDed);
/* fprintf(stderr, "Corrections %x %x.\n", hi_correct, lo_correct);*/
}
char hi_nibble = val_nibble(hi_byte);
char lo_nibble = val_nibble(lo_byte);
strOut[i] = (hi_nibble << 4) | lo_nibble;
}
return 1;
}