我正在用单个输出单元(二进制分类)编写MLP的简单实现。我需要它用于教学目的,所以我不能使用现有的实现:(
我设法创建了一个工作虚拟模型并实现了训练功能,但MLP并没有收敛。实际上,输出单位的梯度在时期上保持很高,因此其权重接近无穷大。
我的实施:
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
X = np.loadtxt('synthetic.txt')
t = X[:, 2].astype(np.int)
X = X[:, 0:2]
# Sigmoid activation function for output unit
def logistic(x):
return 1/(1 + np.exp(-x))
# derivative of the tanh activation function for hidden units
def tanh_deriv(x):
return 1 - np.tanh(x)*np.tanh(x)
input_num = 2 # number of units in the input layer
hidden_num = 2 # number of units in the hidden layer
# initialize weights with random values:
weights_hidden = np.array((2 * np.random.random( (input_num + 1, hidden_num + 1) ) - 1 ) * 0.25)
weights_out = np.array((2 * np.random.random( hidden_num + 1 ) - 1 ) * 0.25)
def predict(x):
global input_num
global hidden_num
global weights_hidden
global weights_out
x = np.append(x.astype(float), 1.0) # input to the hidden layer: features + bias term
a = x.dot(weights_hidden) # activations of the hidden layer
z = np.tanh(a) # output of the hidden layer
q = logistic(z.dot(weights_out)) # input to the output (decision) layer
if q >= 0.5:
return 1
return 0
def train(X, t, learning_rate=0.2, epochs=50):
global input_num
global hidden_num
global weights_hidden
global weights_out
weights_hidden = np.array((2 * np.random.random( (input_num + 1, hidden_num + 1) ) - 1 ) * 0.25)
weights_out = np.array((2 * np.random.random( hidden_num + 1 ) - 1 ) * 0.25)
for epoch in range(epochs):
gradient_out = 0.0 # gradients for output and hidden layers
gradient_hidden = []
for i in range(X.shape[0]):
# forward propagation
x = np.array(X[i])
x = np.append(x.astype(float), 1.0) # input to the hidden layer: features + bias term
a = x.dot(weights_hidden) # activations of the hidden layer
z = np.tanh(a) # output of the hidden layer
q = z.dot(weights_out) # activations to the output (decision) layer
y = logistic(q) # output of the decision layer
# backpropagation
delta_hidden_s = [] # delta and gradient for a single training sample (hidden layer)
gradient_hidden_s = []
delta_out_s = t[i] - y # delta and gradient for a single training sample (output layer)
gradient_out_s = delta_out_s * z
for j in range(hidden_num + 1):
delta_hidden_s.append(tanh_deriv(a[j]) * (weights_out[j] * delta_out_s))
gradient_hidden_s.append(delta_hidden_s[j] * x)
gradient_out = gradient_out + gradient_out_s # accumulate gradients over training set
gradient_hidden = gradient_hidden + gradient_hidden_s
print "\n#", epoch, "Gradient out: ",gradient_out,
print "\n Weights out: ", weights_out
# Now updating weights
weights_out = weights_out - learning_rate * gradient_out
for j in range(hidden_num + 1):
weights_hidden.T[j] = weights_hidden.T[j] - learning_rate * gradient_hidden[j]
train(X, t, 0.2, 50)
输出单位在时代上的梯度和权重的演变:
0 Gradient out: [ 11.07640724 -7.20309009 0.24776626]
Weights out: [-0.15397237 0.22232593 0.03162811]
1 Gradient out: [ 23.68791197 -19.6688382 -1.75324703]
Weights out: [-2.36925382 1.66294395 -0.01792515]
2 Gradient out: [ 79.08612305 -65.76066015 -7.70115262]
Weights out: [-7.10683621 5.59671159 0.33272426]
3 Gradient out: [ 99.59798656 -93.90973727 -21.45674943]
Weights out: [-22.92406082 18.74884362 1.87295478]
...
49 Gradient out: [ 107.89975864 -105.8654327 -104.69591522]
Weights out: [-1003.67912726 976.87213404 922.38862049]
我尝试了不同的数据集,各种数量的隐藏单位。我尝试用加法而不是减法来更新权重......没有什么可以帮助......
有人可以告诉我可能有什么问题吗? 提前致谢
答案 0 :(得分:2)
我不相信你应该使用平方和误差函数进行二进制分类。相反,你应该使用交叉熵误差函数,它基本上是一个似然函数。这样,从正确答案预测的时间越长,错误就越昂贵。请阅读Christopher Bishop撰写的“模式识别和机器学习”第235页的“网络培训”部分,这将为您提供有关如何在FFNN上进行监督学习的正确概述。
偏置单元非常重要,因此它们可以实现传输功能。沿着x曲线移动。权重将改变转移功能的陡度。曲线。注意偏差和权重之间的差异,因为它可以很好地理解为什么它们都需要存在于FFNN中。