在scipy python中使用UnivariateSpline拟合数据

时间:2013-07-28 21:58:36

标签: python numpy scipy curve-fitting

我有一个实验数据,我试图在scipy中使用UnivariateSpline函数来拟合曲线。数据如下:

 x         y
13    2.404070
12    1.588134
11    1.760112
10    1.771360
09    1.860087
08    1.955789
07    1.910408
06    1.655911
05    1.778952
04    2.624719
03    1.698099
02    3.022607
01    3.303135    

这是我正在做的事情:

import matplotlib.pyplot as plt
from scipy import interpolate
yinterp = interpolate.UnivariateSpline(x, y, s = 5e8)(x) 
plt.plot(x, y, 'bo', label = 'Original')
plt.plot(x, yinterp, 'r', label = 'Interpolated')
plt.show()

它的外观如下:

Curve fit

我想知道是否有人考虑过scipy可能有的其他曲线拟合选项?我比较狡猾。

谢谢!

1 个答案:

答案 0 :(得分:39)

有一些问题。

第一个问题是x值的顺序。从我们找到的scipy.interpolate.UnivariateSpline文档

x : (N,) array_like
    1-D array of independent input data. MUST BE INCREASING.

我的压力增加了。对于您给出的数据,x的顺序相反。 要调试它,使用“普通”样条曲线来确保一切都有意义是很有用的。

第二个问题,以及与您的问题更直接相关的问题,与s参数有关。它有什么作用?再次从我们找到的文档中

s : float or None, optional
    Positive smoothing factor used to choose the number of knots.  Number
    of knots will be increased until the smoothing condition is satisfied:

    sum((w[i]*(y[i]-s(x[i])))**2,axis=0) <= s

    If None (default), s=len(w) which should be a good value if 1/w[i] is
    an estimate of the standard deviation of y[i].  If 0, spline will
    interpolate through all data points.

因此,在最小二乘意义上,s确定插值曲线必须与数据点的接近程度。如果我们将值设置得非常大,那么样条曲线不需要靠近数据点。

作为一个完整的例子,请考虑以下内容

import scipy.interpolate as inter
import numpy as np
import pylab as plt

x = np.array([13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
y = np.array([2.404070, 1.588134, 1.760112, 1.771360, 1.860087,
          1.955789, 1.910408, 1.655911, 1.778952, 2.624719,
          1.698099, 3.022607, 3.303135])
xx = np.arange(1,13.01,0.1)
s1 = inter.InterpolatedUnivariateSpline (x, y)
s1rev = inter.InterpolatedUnivariateSpline (x[::-1], y[::-1])
# Use a smallish value for s
s2 = inter.UnivariateSpline (x[::-1], y[::-1], s=0.1)
s2crazy = inter.UnivariateSpline (x[::-1], y[::-1], s=5e8)
plt.plot (x, y, 'bo', label='Data')
plt.plot (xx, s1(xx), 'k-', label='Spline, wrong order')
plt.plot (xx, s1rev(xx), 'k--', label='Spline, correct order')
plt.plot (xx, s2(xx), 'r-', label='Spline, fit')
# Uncomment to get the poor fit.
#plt.plot (xx, s2crazy(xx), 'r--', label='Spline, fit, s=5e8')
plt.minorticks_on()
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Result from example code