我正在尝试使用R包在SVM中应用特征选择(例如递归特征选择)。我已经安装了Weka,它支持LibSVM中的功能选择,但我没有找到任何SVM语法或类似的例子。一个简短的例子将是一个很大的帮助。
答案 0 :(得分:14)
rfe
包中的函数caret
执行各种算法的递归特征选择。以下是caret
documentation:
library(caret)
data(BloodBrain, package="caret")
x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
x <- x[, -findCorrelation(cor(x), .8)]
x <- as.data.frame(x)
svmProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = caretFuncs,
number = 200),
## pass options to train()
method = "svmRadial")
# Here's what your results look like (this can take some time)
> svmProfile
Recursive feature selection
Outer resampling method: Bootstrap (200 reps)
Resampling performance over subset size:
Variables RMSE Rsquared RMSESD RsquaredSD Selected
2 0.6106 0.4013 0.05581 0.08162
5 0.5689 0.4777 0.05305 0.07665
10 0.5510 0.5086 0.05253 0.07222
20 0.5203 0.5628 0.04892 0.06721
71 0.5202 0.5630 0.04911 0.06703 *
The top 5 variables (out of 71):
fpsa3, tcsa, prx, tcpa, most_positive_charge